OUTLINE OF CLOSURE OPERATORS

• A finite meet semilattice with 1 is a lattice.
• A complete lattice is an ordered set in which every subset has a meet and join.
• A complete meet semilattice is an ordered set in which every subset has a meet.
• Every complete meet semilattice is a complete lattice.
• Closure operators
 \[x \leq \gamma(x) \]
 \[x \leq y \implies \gamma(x) \leq \gamma(y) \]
 \[\gamma(\gamma(x)) = \gamma(x) \]
• Closure systems: subsets of \(P(X) \) closed under arbitrary intersections (more generally, complete meets)
• Closure rules: implications \(a \in S \) or \(B \subseteq S \implies c \in S \)
• The lattice of closed sets is a complete lattice.
• Every complete lattice can be so represented.
• Random examples from implications
• Topological closure
• Order ideals of an ordered set:
 \(b \in I \implies a \in I \) over all pairs \(a \leq b \) in \(P \).
• Subgroups of a group, or more generally, subalgebras of an algebra
• Normal subgroups, ideals of a ring.
• Algebraic closure operators: from finitary rules. See Chapter 3 of the notes.
• Subspaces of a vector space: rules \(0 \in S \) and \(x, y \in S \implies cx + dy \in S \)
• Flats of a geometry rules \(x, y \in S \implies cx + dy \in S \) with \(c + d = 1 \)
• The exchange property: \(x \in \Gamma(\{y\} \cup Z) \) and \(x \notin \Gamma(Z) \implies y \in \Gamma(\{x\} \cup Z) \)
• Example: span in a vector space, flats of a geometry
• The convex hull of a set of points in \(\mathbb{R}^n \): rules \(x, y \in S \implies cx + dy \in S \) with \(c + d = 1 \) and \(c, d \geq 0 \)
• The anti-exchange property: \(\Gamma(Z) = Z \) and \(x \in \Gamma(\{y\} \cup Z) \) and \(x \notin \Gamma(Z) \implies y \notin \Gamma(\{x\} \cup Z) \)
• Example: the convex hull operator

Date: September 19, 2014.
- Relative convex sets: restrict convex hull to fixed set T
- Convex subsets of an ordered set: $x, z \in S \Rightarrow y \in S$ for $x < y < z$ in P
- Galois connections: see Exercise 14 of Chapter 2.
- The MacNeille completion of an ordered set: apply the Galois connection closure to the relation \leq contained in $P \times P$.
- Computing the closure: apply the closure rules recursively
- Proving the closure is what it is: to show that $\Gamma(S) = T$, show that $R \subseteq \Gamma(S)$ and that T is closed.
- Join as a closure operator on the nonzero join irreducibles of a finite lattice
- Bases for a finite lattice:
 1. All inclusions $p \leq q$ and $s \leq \bigvee T$
 2. Canonical direct basis: $p \leq q$ and $s \leq \bigvee T$ with T minimal w.r.t. set containment
 3. D-basis: $p \leq q$ and $s \leq \bigvee T$ with T minimal w.r.t. refinement
 4. GD basis
- The lattice of closure operators on a set