A closure rule is *nullary* if it has the form \(x \in S \), and *unary* if it is of the form \(y \in S \implies z \in S \). Prove that if \(\Sigma \) is a collection of nullary and unary closure rules, then nonempty unions of closed sets are closed, and hence the lattice of closed sets \(C_\Sigma \) is distributive. Conclude that the subalgebra lattice of an algebra with only constants and unary operations is distributive.

Prove that the refinement relation on finite subsets of a lattice \(L \) has the following properties.

1. \(A \ll B \) implies \(\bigvee A \leq \bigvee B \).
2. The relation \(\ll \) is a quasiorde on the finite subsets of \(L \).
3. If \(A \subseteq B \) then \(A \ll B \).
4. If \(A \) is an antichain, \(A \ll B \) and \(B \ll A \), then \(A \subseteq B \).
5. If \(A \) and \(B \) are antichains with \(A \ll B \) and \(B \ll A \), then \(A = B \).
6. If \(A \ll B \) and \(B \ll A \), then \(A \) and \(B \) have the same set of maximal elements.

Draw the lattice \(\text{Co}(4) \) of convex subsets of a 4-element chain. Give the D-basis for this lattice.

Give the D-basis for five relatively small lattices.