
9. Modular and Semimodular Lattices

To dance beneath the diamond sky with one hand waving free ...
–Bob Dylan

The modular law was invented by Dedekind to reflect a crucial property of the
lattice of subgroups of an abelian group, or more generally the lattice of normal
subgroups of a group. In this chapter on modular lattices you will see the lattice
theoretic versions of some familiar theorems from group theory. This will lead us
naturally to consider semimodular lattices.

Likewise, the lattice of submodules of a module over a ring is modular. Thus our
results on modular lattices apply to the lattice of ideals of a ring, or the lattice of
subspaces of a vector space. These applications make modular lattices particularly
important.

The smallest nonmodular lattice is N5, which is called the pentagon. Dedekind’s
characterization of modular lattices is simple [5].

Theorem 9.1. A lattice is modular if and only if it does not contain the pentagon
as a sublattice.

Proof. Clearly, a modular lattice cannot contain N5 as a sublattice. Conversely,
suppose L is a nonmodular lattice. Then there exist x > y and z in L such that
x ∧ (y ∨ z) > y ∨ (x ∧ z). Now the lattice freely generated by x, y, z with x ≥ y is
shown in Figure 9.1; you should verify that it is correct. The elements x ∧ (y ∨ z),
y ∨ (x ∧ z), z, x ∧ z and y ∨ z form a pentagon there, and likewise in L. Since the
pentagon is subdirectly irreducible and x∧ (y∨z)/y∨ (x∧z) is the critical quotient,
these five elements are distinct. �

Birkhoff [1] showed that there is a similar characterization of distributive lattices
within the class of modular lattices. The diamond is M3, which is the smallest
nondistributive modular lattice.

Theorem 9.2. A modular lattice is distributive if and only if it does not contain
the diamond as a sublattice.

Proof. Again clearly, a distributive lattice cannot have a sublattice isomorphic to
M3. Conversely, let L be a nondistributive modular lattice. Then, by Lemma 8.2,
there exist x, y, z in L such that (x∨y)∧ (x∨z)∧ (y∨z) > (x∧y)∨ (x∧z)∨ (y∧z).
Now the free modular lattice FM(3) is diagrammed in Figure 9.2; again you should
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Figure 9.1: FL(2+ 1)

verify that it is correct.1 The interval between the two elements above is a diamond
in FM(3), and the corresponding elements will form a diamond in L.

The details go as follows. The middle elements of our diamond should be

[x ∧ (y ∨ z)] ∨ (y ∧ z) = [x ∨ (y ∧ z)] ∧ (y ∨ z)

[y ∧ (x ∨ z)] ∨ (x ∧ z) = [y ∨ (x ∧ z)] ∧ (x ∨ z)

[z ∧ (x ∨ y)] ∨ (x ∧ y) = [z ∨ (x ∧ y)] ∧ (x ∨ y)

where in each case the equality follows from modularity. The join of the first pair
of elements is (using the first expressions)

[x ∧ (y ∨ z)] ∨ (y ∧ z) ∨ [y ∧ (x ∨ z)] ∨ (x ∨ z) = [x ∧ (y ∨ z)] ∨ [y ∧ (x ∨ z)]

= [(x ∧ (y ∨ z)) ∨ y] ∧ (x ∨ z)

= (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z).

Symmetrically, the other pairs of elements also join to (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z).
Since the second expression for each element is dual to the first, each pair of these
three elements meets to (x∧y)∨(x∧z)∨(y∧z). Because the diamond is simple, the
five elements will be distinct, and hence form a sublattice isomorphic to M3. �

1Recall from Chapter 7, though, that FM(n) is infinite and has an unsolvable word problem

for n ≥ 4.
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Figure 9.2: FM(3)

Corollary. A lattice is distributive if and only if it has neither N5 nor M3 as a
sublattice.

The preceding two results tell us something more about the bottom of the lattice
Λ of lattice varieties. We already know that the trivial variety T is uniquely covered
by D = HSP(2), which is in turn covered by HSP(N5) and HSP(M3). By the
Corollary, these are the only two varieties covering D.

Much more is known about the bottom of Λ. Both HSP(N5) and HSP(M3)
are covered by their join HSP{N5,M3} = HSP(N5 × M3). George Grätzer and
Bjarni Jónsson ([8], [11]) showed that HSP(M3) has two additional covers, and
Jónsson and Ivan Rival [12] proved that HSP(N5) has exactly fifteen other covers,
each generated by a finite subdirectly irreducible lattice. You are encouraged to
try and find these covers. Because of Jónsson’s Lemma, it is never hard to tell if
HSP(K) covers HSP(L) whenK and L are finite lattices; the hard part is determining
whether your list of covers is complete. Since a variety generated by a finite lattice
can have infinitely many covering varieties, or a covering variety generated by an
infinite subdirectly irreducible lattice, this can only be done near the bottom of Λ;
see [16].
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Now we return to modular lattices. For any two elements a, b in a lattice L there
are natural maps µa : (a ∨ b)/b → a/(a ∧ b) and νb : a/(a ∧ b) → (a ∨ b)/b given by

µa(x) = x ∧ a

νb(x) = x ∨ b.

Dedekind showed that these maps play a special role in the structure of modular
lattices.

Theorem 9.3. If a and b are elements of a modular lattice L, then µa and νb are
mutually inverse isomorphisms, whence (a ∨ b)/b ∼= a/(a ∧ b).

Proof. Clearly, µa and νb are order preserving. They are mutually inverse maps by
modularity: for if x ∈ (a ∨ b)/b, then

νbµa(x) = b ∨ (a ∧ x) = (b ∨ a) ∧ x = x

and, dually, µaνb(y) = y for all y ∈ a/(a ∧ b). �

Corollary. In a modular lattice, a ≻ a ∧ b if and only if a ∨ b ≻ b.

For groups we actually have somewhat more. The First Isomorphism Theorem
says that if A and B are subgroups of a group G, and B is normal in A ∨ B, then
the quotient groups A/A ∧ B and A ∨ B/B are isomorphic.

A lattice L is said to be semimodular (or upper semimodular) if a ≻ a∧ b implies
a∨ b ≻ b in L. Equivalently, L is semimodular if u ≻ v implies u∨ x � v ∨ x, where
a � b means a covers or equals b. The dual property is called lower semimodular.
Traditionally, semimodular by itself always refers to upper semimodularity. Clearly
the Corollary shows that modular lattices are both upper and lower semimodular.
A strongly atomic, algebraic lattice that is both upper and lower semimodular is
modular. (See Theorem 3.7 of [3]; you are asked to prove the finite dimensional
version of this in Exercise 3.)

Dedekind proved in his seminal paper of 1900 that every maximal chain in a finite
dimensional modular lattice has the same length. The proof extends naturally to
semimodular lattices.

Theorem 9.4. Let L be a semimodular lattice and let a < b in L. If there is a
finite maximal chain from a to b, then every chain from a to b is finite, and all the
maximal ones have the same length.

Proof. We are given that there is a finite maximal chain in b/a, say

a = a0 ≺ a1 ≺ · · · ≺ an = b.

If n = 1, i.e., a ≺ b, then the theorem is trivially true. So we may assume inductively
that it holds for any interval containing a maximal chain of length less than n.
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Let C be another maximal chain in b/a. If, perchance, c ≥ a1 for all c ∈ C−{a},
then C −{a} is a maximal chain in b/a1. In that case, C −{a} has length n− 1 by
induction, and so C has length n.

Thus we may assume that there is an element d ∈ C − {a} such that d � a1.
Moreover, since b/a1 has finite length, we can choose d such that d∨ a1 is minimal,
i.e., e∨ a1 ≥ d∨ a1 for all e ∈ C −{a}. We can show that d ≻ a as follows. Suppose
not. Then d > e > a for some e ∈ L; since C is a maximal chain containing a and
d, we can choose e ∈ C. Now a1 ≻ a = d ∧ a1 = e ∧ a1. Hence by semimodularity
d ∨ a1 ≻ d and e ∨ a1 ≻ e. But the choice of d implies e ∨ a1 ≥ d ∨ a1 ≻ d > e,
contradicting the second covering relation. Therefore d ≻ a.

Now we are quickly done. As a1 and d both cover a, their join a1 ∨ d covers both
of them. Since a1 ∨ d ≻ a1, every maximal chain in b/(a1 ∨ d) has length n − 2.
Then every chain in b/d has length n− 1, and C has length n, as desired. �

Now let L be a semimodular lattice in which every principal ideal ↓x has a finite
maximal chain. Then we can define a dimension function δ on L by letting δ(x) be
the length of a maximal chain from 0 to x:

δ(x) = n if 0 = c0 ≺ c1 ≺ · · · ≺ cn = x.

By Theorem 9.4, δ is well defined. For semimodular lattices the properties of the
dimension function can be summarized as follows.

Theorem 9.5. If L is a semimodular lattice and every principal ideal has only finite
maximal chains, then the dimension function on L has the following properties.

(1) δ(0) = 0,
(2) x > y implies δ(x) > δ(y),
(3) x ≻ y implies δ(x) = δ(y) + 1,
(4) δ(x ∨ y) + δ(x ∧ y) ≤ δ(x) + δ(y).

Conversely, if L is a lattice that admits an integer valued function δ satisfying (1)–
(4), then L is semimodular and principal ideals have only finite maximal chains.

Proof. Given a semimodular lattice L in which principal ideals have only finite
maximal chains, properties (1) and (2) are obvious, while (3) is a consequence of
Theorem 9.4. The only (not very) hard part is to establish the inequality (4). Let x
and y be elements of L, and consider the join map νx : y/(x∧y) → (x∨y)/x defined
by νx(z) = z∨x. Recall that, by semimodularity, u ≻ v implies u∨x � v∨x. Hence
νx takes maximal chains in y/(x∧ y) to maximal chains in (x∨ y)/x. So the length
of (x ∨ y)/x is at most that of y/(x ∧ y), i.e.,

δ(x ∨ y)− δ(x) ≤ δ(y)− δ(x ∧ y)

which establishes the desired inequality.
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Conversely, suppose L is a lattice that admits a function δ satisfying (1)–(4). Note
that, by (2), δ(x) ≥ δ(z)+2 whenever x > y > z; hence if x ≥ z and δ(x) = δ(z)+1,
then x ≻ z.

To establish semimodularity, assume a ≻ a ∧ b in L. By (3) we have δ(a) =
δ(a ∧ b) + 1, and so by (4)

δ(a ∨ b) + δ(a ∧ b) ≤ δ(a) + δ(b)

= δ(a ∧ b) + 1 + δ(b)

whence δ(a ∨ b) ≤ δ(b) + 1. As a ∨ b > b, in fact δ(a ∨ b) = δ(b) + 1 and a ∨ b ≻ b,
as desired.

For any a ∈ L, if a = ak > ak−1 > · · · > a0 is any chain in ↓ a, then δ(aj) >
δ(aj−1) so k ≤ δ(a). Thus every chain in ↓a has length at most δ(a). �

For modular lattices, the map µx is an isomorphism, so we obtain instead equality.
It also turns out that we can dispense with the third condition, though this is not
very important.

Theorem 9.6. If L is a modular lattice and every principal ideal has only finite
maximal chains, then

(1) δ(0) = 0,
(2) x > y implies δ(x) > δ(y),
(3) δ(x ∨ y) + δ(x ∧ y) = δ(x) + δ(y).

Conversely, if L is a lattice that admits an integer-valued function δ satisfying (1)–
(3), then L is modular and principal ideals have only finite maximal chains.

At this point, it is perhaps useful to have some examples of semimodular lat-
tices. The lattice of equivalence relations Eq X is semimodular, but nonmodular
for |X| ≥ 4. The lattice in Figure 9.3 is semimodular, but not modular.2 We will
see more semimodular lattices as we go along, arising from group theory (subnormal
subgroups) in this chapter and from geometry in Chapter 11.

For our applications to group theory, we need a supplement to Theorem 9.4.
This in turn requires a definition. We say that a quotient a/b transposes up to
c/d if a ∨ d = c and a ∧ d = b. We then say that c/d transposes down to a/b.
We then define projectivity to be the smallest equivalence relation on the set of all
quotients of a lattice L that contains all transposed pairs 〈x/(x ∧ y), (x ∨ y)/y〉.
Thus a/b is projective to c/d if and only if there exists a sequence of quotients

2One standard trick to construct semimodular lattices is to take a finite dimensional modular

lattice L, of dimension n say, so that δ(1) = n. Choose an integer k < n, and remove all elements

x ∈ L with k ≤ δ(x) < n. (Alternatively, take the join semilattice congruence collapsing all these

elements to 1.) The result is a semimodular lattice L̂ of dimension k. The lattice in Figure 9.3 was

obtained by applying this method to the lattice of subsets of a four element set. See Exercise 1 of

Chapter 11.
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Figure 9.3

a/b = a0/b0, a1/b1, . . . , an/bn = c/d such that ai/bi and ai+1/bi+1 are transposes
(up or down).

The strengthened version of Theorem 9.4 goes thusly. This can be (and was
originally) obtained by a slight extension of Dedekind’s arguments. The proof given
here is due to George Grätzer and the author [9].

Theorem 9.7. Let C and D be two maximal chains in a finite length semimodular
lattice, say

0 = c0 ≺ c1 ≺ · · · ≺ cn = 1

0 = d0 ≺ d1 ≺ · · · ≺ dn = 1.

Then there is a permutation π of the set {1, . . . , n} such that ci/ci−1 is projective
in two steps (up-down) to dπ(i)/dπ(i)−1 for all i.

Proof. Again, the proof is by induction on the length n. The statement is obvious
for n ≤ 2, so assume n > 2. The argument is illustrated in Figure 9.4.

Let k be the largest integer with c1 � dk, noting k < n. If k = 0, then c1 = d1 and
the statement follows by the induction hypothesis. So we can assume that k > 0.

For 0 ≤ j ≤ n, let ej = c1 ∨ dj . Note that e0 = c1 and ek = ek+1 = dk+1, and
indeed ej = dj for j ≥ k + 1. Now

c1 = e0 ≺ e1 ≺ · · · ≺ ek = ek+1 ≺ ek+2 ≺ · · · ≺ en = 1

is a maximal chain in the interval 1/c1. By induction, there is an bijective map
σ : {2, . . . , n} → {1, . . . , k, k + 2, . . . , n} such that, for i > 1, each interval ci/ci−1

is projective up to some prime interval ui/vi in L, which in turn projects down to
eσ(i)/eσ(i)−1. For j ≤ k, ej/ej−1 projects down to dj/dj−1, while for j > k + 1 we
have ej/ej−1 = dj/dj−1. Meanwhile, c1/0 projects up to dk+1/dk. So we may take
π to be the permutation with π(i) = σ(i) for i 6= 1, and π(1) = k + 1. �
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Theorems 9.4 and 9.7 are important in group theory. A chief series of a group G
is a maximal chain in the lattice of normal subgroupsN (G). Since N (G) is modular,
our theorems apply.

Corollary. If a group G has a finite chief series of length k,

{1} = N0 < N1 < · · · < Nk = G

then every chief series of G has length k. Moreover, if

{1} = H0 < H1 < · · · < Hk = G

is another chief series of G, then there is a permutation π of {1, . . . , k} such that
Hi/Hi−1

∼= Nπ(i)/Nπ(i)−1 for all i.

A subgroup H is subnormal in a group G, written H ⊳⊳ G, if there is a chain in
Sub G,

H = H0 ⊳ H1 ⊳ . . . ⊳ Hk = G

with each Hi−1 normal in Hi (but Hj need not be normal in G for j < k). Herman
Wielandt proved that the subnormal subgroups of a finite group form a lattice [20].

Theorem 9.8. If G is a finite group, then the subnormal subgroups of G form a
lower semimodular sublattice SN (G) of Sub G.
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Proof. Let H and K be subnormal in G, with say

H = H0 ⊳ H1 ⊳ . . . ⊳ Hm = G

K = K0 ⊳ K1 ⊳ . . . ⊳ Kn = G.

Then H ∩Ki ⊳ H ∩Ki+1, and so we have the series

H ∩K ⊳H ∩K1 ⊳ H ∩K2 ⊳ . . . H ∩ G = H ⊳H1 ⊳ . . . ⊳ G.

Thus H ∩K ⊳⊳ G. Note that this argument shows that if H, K ⊳⊳ G and K ≤ H,
then K ⊳⊳ H.

The proof that SN (G) is closed under joins is a bit trickier. Let H, K ⊳⊳ G
as before. Without loss of generality, H and K are incomparable. By induction,
we may assume that |G| is minimal and that the result holds for larger subnormal
subgroups of G, i.e.,

(1) the join of subnormal subgroups is again subnormal in any group G′ with
|G′| < |G|,

(2) if H < L ⊳⊳ G, then L ∨K ⊳⊳ G; likewise, if K < M ⊳⊳ G, then H ∨M ⊳⊳ G.

If there is a subnormal proper subgroup S of G that contains both H and K, then
H and K are subnormal subgroups of S (by the observation above). In that case,
H ∨K ⊳⊳ S by the first assumption, whence H ∨K ⊳⊳ G. Thus we may assume that

(3) no subnormal proper subgroup of G contains both H and K.

Combining this with assumption (2) yields

(4) H1 ∨K = G = H ∨K1.

Finally, if both H and K are normal in G, then so is H ∨K. Thus we may assume
(by symmetry) that

(5) H is not normal in G, and hence H < H1 ≤ Hm−1 < G.

Now G is generated by the set union H1 ∪K by assumption (4), so we must have
x−1Hx 6= H for some x ∈ H1 ∪K. But H ⊳ H1, so k−1Hk 6= H for some k ∈ K.

However, k−1Hk is a subnormal subgroup of Hm−1, because

k−1Hk ⊳ k−1H1k ⊳ . . . ⊳ k−1Hm−1k = Hm−1

as Hm−1⊳G. Applying assumption (1) with G′ = Hm−1, we find that H∨k−1Hk is a
subnormal subgroup of Hm−1, and hence of G. Moreover, H < H∨k−1Hk ≤ H∨K,
whence (H ∨ k−1Hk) ∨K = H ∨K. Using assumption (2) with L = H ∨ k−1Hk,
it follows that H ∨K = L ∨K is subnormal in G, as desired.

Finally, if H ∨K ≻ H in SN (G), then H ⊳ H ∨K: by the observation after the
first argument, H and H ∨K both subnormal and H ≤ H ∨K makes H ⊳ ⊳H ∨K,
and since it is a covering relation in SN (G) then H ⊳H ∨K. Moreover, (H ∨K)/H
is simple. By one of the group isomorphism theorems, K/(H ∧K) is likewise simple,
so K ≻ H ∧K. Thus SN (G) is lower semimodular. �

A maximal chain in SN (G) is called a composition series for G. As SN (G) is lower
semimodular, the duals of Theorems 9.4 and 9.7 yield the Jordan-Hölder structure
theorem for groups.
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Corollary. If a finite group G has a composition series of length n,

{1} = H0 ⊳ H1 ⊳ . . . ⊳ Hn = G

then every composition series of G has length n. Moreover, if

{1} = K0 ⊳ K1 ⊳ . . . ⊳ Kn = G

is another composition series for G, then there is a permutation π of {1, . . . , n} such
that Ki/Ki−1

∼= Hπ(i)/Hπ(i)−1 for all i.

Historical note. The Jordan-Hölder theorem provides a good example of the
interaction between groups and lattice theory, with a long history. For the interestd
reader, the primary references are, in order, Jordan [13], Hölder [10], Dedekind [5],
Schreier [18], Zassenhaus [21], and Wielandt [20]. Secondary sources are Burnside
Chap. V [2], Zassenhaus Chap. II.5 [22], and Birkhoff (1963 ed.) Chap. III.7 [1].
Slick modern proofs are in Grätzer and Nation [9] and Czedli and Schmidt [4].

A finite decomposition of an element a ∈ L is an expression a =
∧

Q where
Q is a finite set of meet irreducible elements. If L satisfies the ACC, then every
element has a finite decomposition. We have seen that every element of a finite
distributive lattice has a unique irredundant decomposition. In a finite dimensional
modular lattice, an element can have many different finite decompositions, but the
number of elements in any irredundant decomposition is always the same. This
is a consequence of the following replacement property (known as the Kurosh-Ore
Theorem).

Theorem 9.9. If a is an element of a modular lattice and

a = q1 ∧ . . . ∧ qm = r1 ∧ . . . ∧ rn

are two irredundant decompositions of a, then m = n and for each qi there is an rj
such that

a = rj ∧
∧

k 6=i

qk

is an irredundant decomposition.

Proof. Let a =
∧

Q =
∧

R be two irredundant finite decompositions (dropping
the subscripts temporarily). Fix q ∈ Q, and let q =

∧
(Q − {q}). By modularity,

q ∨ q/q ∼= q/q ∧ q = q/a. Since q is meet irreducible in L, this implies that a is meet
irreducible in q/a. However, a = q ∧

∧
R =

∧
r∈R(q ∧ r) takes place in q/a, so we

must have a = q ∧ r for some r ∈ R.
Next we observe that a = r ∧

∧
(Q − {q}) is irredundant. For if not, we would

have a = r ∧
∧

S irredundantly for some proper subset S ⊂ Q − {q}. Reapplying
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the first argument to the two decompositions a = r ∧
∧

S =
∧

Q with the element
r, we obtain a = q′ ∧

∧
S for some q′ ∈ Q, contrary to the irredundance of Q.

It remains to show that |Q| = |R|. Let Q = {q1, . . . , qm} say. By the first part,
there is an element r1 ∈ R such that a = r1 ∧

∧
(Q − {q1}) =

∧
R irredundantly.

Applying the argument to these two decompositions and q2, there is an element
r2 ∈ R such that a = r1 ∧ r2 ∧

∧
(Q − {q1, q2}) =

∧
R. Moreover, r1 and r2

are distinct, for otherwise we would have a = r1 ∧
∧
(Q − {q1, q2}), contradicting

the irredundance of a = r1 ∧
∧
(Q − {q1}). Continuing, we can replace q3 by an

element r3 of R, distinct from r1 and r2, and so forth. After m steps, we obtain
a = r1 ∧ · · · ∧ rm, whence R = {r1, . . . , rm}. Thus |Q| = |R|. �

With a bit of effort, this can be improved to a simultaneous exchange theorem.

Theorem 9.10. If a is an element of a modular lattice and a =
∧

Q =
∧

R are
two irredundant finite decompositions of a, then for each q ∈ Q there is an r ∈ R
such that

a = r ∧
∧

(Q− {q}) = q ∧
∧

(R− {r}).

The proof of this, and much more on the general theory of decompositions in
lattices, can be found in Crawley and Dilworth [3]; see also Dilworth [7].

Now Theorems 9.9 and 9.10 are exactly what we want in a finite dimensional mod-
ular lattice. However, in algebraic modular lattices, finite decompositions into meet
irreducible elements need not coincide with the (possibly infinite) decomposition
into completely meet irreducible elements given by Birkhoff’s Theorem. Consider,
for example, the chain C = (ω + 1)d, the dual of ω + 1. This satisfies the ACC, and
hence is algebraic. The least element of C is meet irreducible, but not completely
meet irreducible. In the direct product Cn, the least element has a finite decom-
position into n meet irreducible elements, but every decomposition into completely
meet irreducibles is necessarily infinite.

Fortunately, the proof of Theorem 9.9 adapts nicely to give us a version suitable
for algebraic modular lattices.

Theorem 9.11. Let a be an element of a modular lattice. If a =
∧

Q is a finite,
irredundant decomposition into completely meet irreducible elements, and a =

∧
R

is another decomposition into meet irreducible elements, then there exists a finite
subset R′ ⊆ R with |R′| = |Q| such that a =

∧
R′ irredundantly.

The application of Theorem 9.11 to subdirect products is immediate.

Corollary. Let A be an algebra such that Con A is a modular lattice. If A has
a finite subdirect decomposition into subdirectly irreducible algebras, then every ir-
redundant subdirect decomposition of A into subdirectly irreducible algebras has the
same number of factors.

A more important application is to the theory of direct decompositions of con-
gruence modular algebras. The corresponding congruences form a complemented
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sublattice of Con A. This subject is treated thoroughly in Chapter 5 of McKenzie,
McNulty and Taylor [15].

Let us close this section by mentioning a nice combinatorial result about finite
modular lattices, due to R. P. Dilworth [6].

Theorem 9.12. In a finite modular lattice L, let Jk(L) be the set of elements that
cover exactly k elements, and let Mk(L) be the set of elements that are covered by
exactly k elements. Then |Jk(L)| = |Mk(L)| for any integer k ≥ 0.

In particular, the number of join irreducible elements in a finite modular lattice
is equal to the number of meet irreducible elements. In fact, Joseph Kung proved
that in a finite modular lattice, there is a bijection m : J(L) ∪ {0} → M(L) ∪ {1}
such that x ≤ m(x); see Kung [14] and Reuter [17].

We will return to modular lattices in Chapter 12. The standard reference for
semimodular lattices is the book by Manfred Stern [19].

Exercises for Chapter 9

1. (a) Prove that a lattice L is distributive if and only if it has the property that
a ∨ c = b ∨ c and a ∧ c = b ∧ c imply a = b.

(b) Show that L is modular if and only if, whenever a ≥ b and c ∈ L, a∨ c = b∨ c
and a ∧ c = b ∧ c imply a = b.

2. Show that every finite dimensional distributive lattice is finite.
3. Prove that if a finite dimensional lattice is both upper and lower semimodular,

then it is modular.
4. Prove that the following conditions are equivalent for a strongly atomic, alge-

braic lattice.

(i) L is semimodular: a ≻ a ∧ b implies a ∨ b ≻ b.
(ii) If a and b both cover a ∧ b, then a ∨ b covers both a and b.
(iii) If b and c are incomparable and b ∧ c < a < c, then there exists x such that

b ∧ c < x ≤ b and a = c ∧ (a ∨ x).

5. Let L be a finite length semimodular lattice, and let C be any maximal chain in
L. Prove that any congruence relation on L is uniquely determined by its restriction
to C. (Use Theorem 9.7) (George Grätzer)

6. Let a and b be elements of a finite dimensional semimodular lattice, and let
νb : a/(a ∧ b) → (a ∨ b)/b by νb(x) = x ∨ b. Show that νb is a join embedding, i.e.,
one-to-one and join-preserving.

7. (a) Find infinitely many simple modular lattices of width 4.
(b) Prove that the variety generated by all lattices of width ≤ 4 contains subdi-

rectly irreducible lattices of width ≤ 4 only.
8. Prove that every arguesian lattice is modular.
9. Let L be a lattice, and suppose there exist an ideal I and a filter F of L such

that L = I ∪ F and I ∩ F 6= ∅.

(a) Show that L is distributive if and only if both I and F are distributive.
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(b) Show that L is modular if and only if both I and F are modular.

(R. P. Dilworth)
10. Show that modular lattices satisfy the equation

x ∧ (y ∨ (z ∧ (x ∨ t))) = x ∧ (z ∨ (y ∧ (x ∨ t))).

11. Let C andD be two chains in a modular lattice L. Prove that C∪D generates
a distributive sublattice of L. (Bjarni Jónsson)

12. Let a and b be two elements in a modular lattice L such that a ∧ b = 0.
Prove that the sublattice generated by ↓a∪ ↓b is isomorphic to the direct product
↓a× ↓b.

13. Prove Theorem 9.11. (Mimic the proof of Theorem 9.9.)
14. Let A =

∏
i∈ω Z2 be the direct product of countably many copies of the two

element group. Describe two decompositions of 0 in Sub A, say 0 =
∧

Q =
∧

R,
such that |Q| = ℵ0 and |R| = 2ℵ0 .
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