MINIMAL BIG LATTICES

1. Reduction

This is a separate document to temporarily input the results on minimal big lattices. The reduction goes as follows.

Theorem 1. If **L** is a finite lattice which is big and not both semidistributive and breadth 2, then **L** contains a sublattice isomorphic to one of the big lattices \mathbf{E}_1 , \mathbf{E}_1^d , \mathbf{E}_2 , \mathbf{E}_3 , \mathbf{E}_3^d , \mathbf{E}_4 , \mathbf{E}_5 , \mathbf{E}_5^d , \mathbf{E}_6 , \mathbf{E}_7 , \mathbf{E}_7^d , \mathbf{E}_8 , \mathbf{E}_9 , \mathbf{E}_9^d , \mathbf{E}_{10} , \mathbf{E}_{11}^d , \mathbf{E}_{12} , \mathbf{E}_{12}^d , \mathbf{E}_{15} , \mathbf{E}_{15}^d , \mathbf{E}_{16} , \mathbf{E}_{17} , \mathbf{E}_{17}^d , \mathbf{E}_{18} , \mathbf{E}_{18}^d , or a sublattice which is big, semidistributive and breadth 2.

Theorem 2. If **L** is a finite, semidistributive, breadth 2, big lattice, then **L** contains a sublattice of the form $(p \vee k)/p \cup k/(p \wedge k)$ such that $\mathbf{FQ}(p,k)$ is infinite.

FIGURE 1. \mathbf{E}_1

FIGURE 2. \mathbf{E}_2

Date: November 10, 1997.

Figure 3. \mathbf{E}_3

FIGURE 4. \mathbf{E}_4

Figure 5. \mathbf{E}_5

Figure 6. \mathbf{E}_6

FIGURE 7. \mathbf{E}_7

FIGURE 8. \mathbf{E}_8

Figure 9. \mathbf{E}_9

Figure 10. \mathbf{E}_{10}

Figure 11. \mathbf{E}_{11}

Figure 12. \mathbf{E}_{12}

Figure 13. \mathbf{E}_{15}

Figure 14. \mathbf{E}_{16}

Figure 15. \mathbf{E}_{17}

Figure 16. \mathbf{E}_{18}

MINIMAL BIG LATTICES

2. When $\mathbf{FQ}(p,k)$ is infinite

Throughout this section **L** will be a finite, breadth 2, semidistributive lattice containing elements p, k such that $p \lor k = 1_{\mathbf{L}}$, $p \land q = 0_{\mathbf{L}}$ and $L = 1/p \cup k/0$.

Theorem 3. If $\mathbf{L} - \{p, k\}$ contains a 3 element antichain, then \mathbf{L} has a sublattice isomorphic to one of \mathbf{E}_{19} , \mathbf{E}_{20} , \mathbf{E}_{20}^d , \mathbf{E}_{21} , \mathbf{E}_{22}^* , \mathbf{E}_{22}^{*d} , \mathbf{E}_{23} , \mathbf{E}_{23}^d , \mathbf{E}_{24} , \mathbf{E}_{24}^d , \mathbf{E}_{25} , \mathbf{E}_{25}^d , \mathbf{E}_{26} , \mathbf{E}_{26}^d , \mathbf{E}_{27} , \mathbf{E}_{27}^d , \mathbf{T}_4 , \mathbf{T}_4^d , \mathbf{T}_5 , \mathbf{T}_6 , \mathbf{T}_{16} , \mathbf{T}_{16}^d , \mathbf{T}_{22} , \mathbf{T}_{22}^d , \mathbf{T}_{23} , \mathbf{T}_{23}^d , \mathbf{T}_{24} , \mathbf{T}_{25}^d , \mathbf{T}_{25}^d , \mathbf{T}_{26}^d , \mathbf{T}_{27}^d , \mathbf{T}_{29}^d , \mathbf{T}_{29}^d , \mathbf{T}_{30}^d , \mathbf{T}_{30}^d .

The proof divides into a couple of cases and their duals.

FIGURE 17. \mathbf{E}_{19}

FIGURE 18. \mathbf{E}_{20}

Figure 22. \mathbf{E}_{24}

Figure 23. \mathbf{E}_{25}

Figure 24. \mathbf{E}_{26}

Figure 25. \mathbf{E}_{27}

Figure 28. \mathbf{T}_6

Figure 31. \mathbf{T}_{23}

Figure 34. \mathbf{T}_{26}

Figure 37. \mathbf{T}_{30}

Theorem 4. If $\mathbf{L} - \{p, k\}$ contains elements $x_0 < x_1$, $y_0 < y_1$ with $x_0 \nleq y_1$, $y_0 \nleq x_1$, and satisfying

- 1. $p < x_0$ implies $x_1 \land (x_0 \lor y_1) > x_0$,
- 2. $p < y_0$ implies $y_1 \land (y_0 \lor x_1) > y_0$,
- 3. $x_1 < k \text{ implies } x_0 \lor (x_1 \land y_0) < x_1,$
- 4. $y_1 < k \text{ implies } y_0 \lor (y_1 \land x_0) < y_1,$

then **L** has a sublattice isomorphic to one of \mathbf{E}_{28} , \mathbf{E}_{28}^d , \mathbf{E}_{29} , \mathbf{E}_{30} , \mathbf{E}_{30}^d , \mathbf{E}_{31} , \mathbf{E}_{31}^d , \mathbf{E}_{32} , \mathbf{E}_{32}^d , \mathbf{E}_{33} , \mathbf{E}_{33}^d , \mathbf{E}_{34} , \mathbf{E}_{35} , \mathbf{E}_{36} , \mathbf{E}_{36}^d , \mathbf{E}_{37} , \mathbf{T}_1 , \mathbf{T}_2 , \mathbf{T}_2^d , \mathbf{T}_{15}^* , \mathbf{T}_{15}^{*d} , \mathbf{T}_{17} , \mathbf{T}_{17}^d , \mathbf{T}_{18} , \mathbf{T}_{18}^d , or one of the previous lattices.

FIGURE 38. \mathbf{E}_{28}

FIGURE 39. \mathbf{E}_{29}

Theorem 5. If $\mathbf{L} - \{p, k\}$ contains elements x and $y_0 < y_1 < y_2 < y_3$ with $x \nleq y_3, y_0 \nleq x$, and satisfying

- 1. $y_3 > p$ implies $y_3 \land (x \lor p) \nleq y_2$,
- 2. $(x \lor p) \land (y_3 \lor p) > p$,
- 3. $y_0 < k \text{ implies } y_0 \lor (x \land k) \not\geq y_1$,
- 4. $(x \wedge k) \lor (y_0 \wedge k) < k$,

Figure 40. \mathbf{E}_{30}

Figure 42. \mathbf{E}_{32}

Figure 43. \mathbf{E}_{33}

Figure 44. \mathbf{E}_{34}

Figure 45. \mathbf{E}_{35}

FIGURE 47. \mathbf{E}_{37}

Figure 48. \mathbf{T}_1

Figure 51. \mathbf{T}_{17}

Figure 52. \mathbf{T}_{18}

then **L** has a sublattice isomorphic to one of \mathbf{E}_{38} , \mathbf{E}_{39} , \mathbf{E}_{39}^d , \mathbf{E}_{40} , \mathbf{E}_{40}^d , \mathbf{E}_{41} , \mathbf{E}_{41}^d , \mathbf{E}_{42} , \mathbf{E}_{42}^d , \mathbf{E}_{43} , \mathbf{E}_{43}^d , \mathbf{E}_{44} , \mathbf{E}_{44}^d , \mathbf{E}_{45} , \mathbf{E}_{45}^d , \mathbf{T}_{21} , \mathbf{T}_{21}^d , \mathbf{T}_{51} , \mathbf{T}_{51}^d , \mathbf{T}_{52} , \mathbf{T}_{52}^d , \mathbf{T}_{53} , \mathbf{T}_{53}^d , \mathbf{T}_{54} , \mathbf{T}_{55}^d , \mathbf{T}_{55}^d , \mathbf{T}_{56}^d , \mathbf{T}_{56}^d , or one of the previous lattices.

FIGURE 53. \mathbf{E}_{38}

FIGURE 54. \mathbf{E}_{39}

Theorem 6. If $\mathbf{L} - \{p, k\}$ contains elements x and $y_0 < y_1 < y_2 < y_3 < y_4$ with $x \nleq y_4$, $y_0 \nleq x$, and satisfying

- 1. $y_3 > p \text{ implies } y_4 \land (x \lor y_3) > y_3,$
- 2. $y_1 < k \text{ implies } y_0 \lor (x \land y_1) < y_1$,

then **L** has a sublattice isomorphic to one of \mathbf{T}_7 , \mathbf{T}_{61} , \mathbf{T}_{61}^d , \mathbf{T}_{62} , \mathbf{T}_{62}^d , \mathbf{T}_{63} , \mathbf{T}_{63}^d , \mathbf{T}_{64} , \mathbf{T}_{65}^d , \mathbf{T}_{65}^d , \mathbf{T}_{66}^d , \mathbf{T}_{67}^d , \mathbf{T}_{67}^d , or one of the previous lattices.

Figure 55. \mathbf{E}_{40}

Figure 56. \mathbf{E}_{41}

Figure 57. \mathbf{E}_{42}

Figure 59. \mathbf{E}_{44}

Figure 60. \mathbf{E}_{45}

Figure 63. \mathbf{T}_{52}

Figure 66. \mathbf{T}_{55}

FIGURE 67. \mathbf{T}_{56}

Figure 68. \mathbf{T}_7

Figure 69. \mathbf{T}_{61}

Figure 70. T_{62}

FIGURE 71. T_{63}

FIGURE 72. T_{64}

- 1. $L = 1/p \cup k/0.$
- 2. $\mathbf{L} \{p, k\}$ contains no 3 element antichain.
- 3. If $\mathbf{L} \{p, k\}$ contains elements $x_0 < x_1$, $y_0 < y_1$ with $x_0 \nleq y_1$, $y_0 \nleq x_1$, then either
 - (a) $p < x_0$ and $x_1 \land (x_0 \lor y_1) = x_0$, or
 - (b) $p < y_0$ and $y_1 \land (y_0 \lor x_1) = y_0$, or
 - (c) $x_1 < k \text{ and } x_0 \lor (x_1 \land y_0) = x_1, \text{ or }$
 - (d) $y_1 < k \text{ and } y_0 \lor (y_1 \land x_0) = y_1.$
- 4. If $\mathbf{L} \{p, k\}$ contains elements x and $y_0 < y_1 < y_2 < y_3$ with $x \nleq y_3$, $y_0 \nleq x$, then either
 - (a) $y_3 > p$ and $y_3 \wedge (x \vee p) \leq y_2$, or

Figure 75. \mathbf{T}_{67}

- (b) $(x \lor p) \land (y_3 \lor p) = p$, or
- (c) $y_0 < k$ and $y_0 \lor (x \land k) \ge y_1$, or
- (d) $(x \wedge k) \vee (y_0 \wedge k) = k$.
- 5. If $\mathbf{L} \{p, k\}$ contains elements x and $y_0 < y_1 < y_2 < y_3 < y_4$ with $x \not\leq y_4, y_0 \not\leq x$, then either (a) $y_3 > p$ and $y_4 \land (x \lor y_3) = y_3$, or

 - (b) $y_1 < k \text{ and } y_0 \lor (x \land y_1) = y_1.$

Then the finitely presented lattice $\mathbf{FQ}(p,k)$ is finite.

28