# Bounds on the size of single deletion error correcting codes 

NYCS, April 14, 2023

This is a survey talk with some new results.
Seminar and friends:
Austin Anderson
Quinn Culver
Manabu Hagiwara
Ellen Hughes
Justin Kong
Kazuhisa Nakasho
J. B. Nation

Classical sources:
V. I. Levenshtein
N. J. A. Sloane
A. A. Kulkarni and N. Kiyavash

## Japan



Bounds on the size of single deletion error correcting codes

## Hawai'i



## Noisy communication channel



Types of error

- sent 10011
- bit-flip: received 11011
- erasure: received 1?011
- deletion: received 1011
- insertion: received 110011


## Example of SDECC

A single deletion error correcting code is capable of correcting one deletion error.
$\mathrm{n}=5$
$C=\{00000,11100,10001,11011,01010,00111\}$
Deletions:

- $00000 \rightarrow 0000$
- $11100 \rightarrow 1100,1110$
- $10001 \rightarrow 0001,1001,1000$
- $11011 \rightarrow 1011,1111,1101$
- $01010 \rightarrow 1010,0010,0110,0100,0101$
- $00111 \rightarrow 0111,0011$


## Fundamental results

Let $x \in 2^{n}$.
The deletion surface $S_{D}(x)$ is all $y \in 2^{n-1}$ that are deletions of $x$.
The insertion surface $S_{l}(x)$ is all $z \in 2^{n+1}$ that are insertions of $x$.
$C \subseteq 2^{n}$ is a single deletion error correcting code (SDECC) if $S_{D}(x) \cap S_{D}\left(x^{\prime}\right)=\varnothing$ whenever $x \neq x^{\prime}$, both in $C$.

Lemma: $S_{D}(x) \cap S_{D}\left(x^{\prime}\right)=\varnothing$ iff $S_{l}(x) \cap S_{l}\left(x^{\prime}\right)=\varnothing$
Levenshtein: A code $C$ is capable of correcting $t$ deletions iff it is capable of correcting $t$ insertions.

Levenshtein also gave a decoding algorithm to correct single deletions from $\mathrm{VT}_{\ell}(n)$. (Varshamov-Tenengolts codes)

## Notation

A word of Hamming weight $k$ will be denoted $x=\left(a_{1}, \ldots, a_{k}\right)$ with $a_{1}<a_{2}<\cdots<a_{k}$ giving the places where $x_{j}$ is 1 . There are $\binom{n}{k}$ such words.

For example, 10101000 is denoted $(1,3,5)$, and there are $\binom{8}{3}=56$ words of length 8 and weight 3.

We use the function $\rho$ where, if the representation of $x$ is $\left(a_{1}, \ldots, a_{k}\right)$, then

$$
\rho(x)=a_{1}+\cdots+a_{k}
$$

and we will consider $\rho(x)(\bmod m)$ for various $m$.
For example, $\rho(1,3,5)=9=3(\bmod 6)$.

Q'n: What is $\max (\mathrm{n})$, largest size of SDECC of length n ?
Conjecture: $\max (n)=\left|\vee T_{0}(n)\right|$
$\mathrm{VT}_{\ell}(n)=\left\{x \in 2^{n}: \rho(x)=\ell(\bmod n+1)\right\}$
Example: $\mathrm{VT}_{0}(5)=\{(),(123),(15),(1245),(24),(345)\}$
$\mathbf{V} \mathbf{T}_{\ell}(n)$ is a SDECC
(if $x$ and $x^{\prime}$ have a common deletion, then $\left|\rho(x)-\rho\left(x^{\prime}\right)\right| \leq n$ )
so $\left|\mathrm{VT}_{\ell}(n)\right|$ is a lower bound on $\max (\mathrm{n})$.

$$
\frac{2^{n}}{n+1} \leq\left|\mathrm{VT}_{0}(n)\right| \leq \max (n) \leq \frac{2^{n}}{n}
$$

$$
\begin{gathered}
\left|\mathrm{VT}_{\ell}(n)\right| \approx \frac{2^{n}}{n+1} \\
\left|\mathrm{VT}_{0}(n)\right| \geq\left|\mathrm{VT}_{\ell}(n)\right| \geq\left|\mathrm{VT}_{1}(n)\right| \\
\left|\mathrm{VT}_{0}(n)\right|=\left|\mathrm{VT}_{1}(n)\right| \text { iff } \mathrm{n}+1 \text { is a power of } 2 \\
\left|\mathrm{VT}_{0}(n)\right|=\frac{1}{2(n+1)} \sum_{d \mid n=1, d ~ o d d} \phi(d) 2^{\frac{n+1}{d}}
\end{gathered}
$$

Each $\mathrm{VT}_{\ell}(n)$ is a perfect code
$\max (\mathrm{n})=\left|\mathrm{VT} \mathrm{T}_{0}(\mathrm{n})\right|$ for $\mathrm{n} \leq 10$
(Sloane, Applegate, Butenko et al.)

## Exciting new result of No, Nakasho

| $n$ | $\left\|\mathrm{VT}_{0}(n)\right\|$ | $\max (n)$ | UB |
| :---: | :---: | :---: | :---: |
| 2 | 2 | 2 | 2 |
| 3 | 2 | 2 | 2 |
| 4 | 4 | 4 | 4 |
| 5 | 6 | 6 | 6 |
| 6 | 10 | 10 | 10 |
| 7 | 16 | 16 | 16 |
| 8 | 30 | 30 | 30 |
| 9 | 52 | 52 | 52 |
| 10 | 94 | 94 | 94 |
| 11 | 172 | 172 | 172 |
| 12 | 316 | $?$ | 320 |
| 13 | 586 | $?$ | 593 |
| 14 | 1096 | $?$ | 1104 |
| 15 | 2048 | $?$ | 2184 |

## Non-uniqueness

Note that $\mathrm{VT}_{0}(n)$ is not unique as the largest known SDECC of length n .

$$
\begin{aligned}
& x=000101111 \ldots \\
& y=000001111 \ldots
\end{aligned}
$$

If $x$ is in a SDECC, then it can be replaced by $y$ to obtain another SDECC of the same size since $S_{D}(y) \subset S_{D}(x)$
(This observation of Sloane has been generalized by Kondo)

## How it got down to 172

Make a graph $G=(V, E)$

- $\mathrm{V}=2^{n}$, all binary words of length n
- $(u, v)$ is an edge if $u$ and $v$ have a common deletion
E.g., with $\mathrm{n}=3$, the vertices $000,100,010,001$ would be pairwise connected by edges because they have the common deletion 00.


## SDECCs correspond to independent sets in G

Given a SDECC $C$, let

$$
x_{j}= \begin{cases}1 & \text { if } j \in C \\ 0 & \text { otherwise }\end{cases}
$$

Size problem: Maximize $\sum_{i \in 2^{n}} x_{i}$ subject to
( $\dagger$ ) $\forall i \in 2^{n} \quad x_{i} \in\{0,1\}$ and $x_{i}+x_{j} \leq 1$ whenever $(i, j) \in E$

## How it got down to 172

Size problem: Maximize $\sum_{i \in 2^{n}} x_{i}$ subject to
( $\dagger$ ) $\forall i \in 2^{n} \quad x_{i} \in\{0,1\}$ and $x_{i}+x_{j} \leq 1$ whenever $(i, j) \in E$
Change it to a linear programming problem: Maximize $\sum_{i \in 2^{n}} x_{i}$ subject to

$$
\text { ( } \ddagger) \quad \forall i \in 2^{n} \quad 0 \leq x_{i} \leq 1 \text { and } x_{i}+x_{j} \leq 1 \text { whenever }(i, j) \in E
$$

Actually, that's not good enough. You have to use Mixed Integer Programming with ( $\dagger$ ) for some edges and ( $\ddagger$ ) for others. Using the graph for $n=11$ :

Albert No (2019): $\sum x_{i} \leq 173.99$
Kazuhisa Nakasho (2023): $\sum x_{i} \leq 172.99$
Hence $\max (11)=172$
$C$ is a k-of-n code if every $x \in C$ has Hamming weight k
Example: a 3-of-8 SDECC with 10 codewords
$C=(123),(345),(246),(156),(237),(147),(567),(138),(468),(378)$ $=11100000,00111000,01010100,10001100,01100010$, 10010010, 00001110, 10100001, 00010101, 00100011
$\max _{k}(n)$ is the maximum size of a $k$-of-n SDECC

## 2-of-n SDECCs

$$
\begin{aligned}
& \max _{2}(n)=\left\lfloor\frac{3 n-2}{4}\right\rfloor \\
& n \quad \max _{2}(n) \\
& \begin{array}{ll}
4 & 2 \\
5 & 3
\end{array} \\
& 6 \quad 4 \\
& 7 \quad 4 \\
& (1,2) \quad(3,4)(2,5)(5,6)(7,8) \quad(6,9) \quad(9,10) \ldots \\
& C=\left\{(i, j) \in 2^{n}: i+j=3(\bmod 4) \text { and } j-i \leq 3\right\} .
\end{aligned}
$$

## Sketch of proof of upper bound for $\max _{2}(\mathrm{n})$

Let $C$ be a 2 -of- $n$ SDECC of length $n$.

- a good codeword is of the form $(k, k+1)$
- a bad codeword is of the form $(k, b)$ with $b>k+1$ so that $|C|=g+b$.
No two codewords have a common deletion, and you cannot have consecutive good codewords.

$$
\begin{gathered}
g \leq \frac{n}{2} \\
g+2 b \leq n-1
\end{gathered}
$$

(RHS is the number of weight 1 words of length $n-1$ )
Adding, we get

$$
2 g+2 b \leq \frac{3 n-2}{2}
$$

whence

$$
|C| \leq \frac{3 n-2}{4}
$$

## VT-like k-of-n SDECCs

Following R. Graham and Sloane:
$J(k, \ell, m, n)=\left\{x \in 2^{n}: \operatorname{wt}(x)=k\right.$ and $\left.\rho(x)=\ell(\bmod m)\right\}$.
For $2 \leq k \leq n / 2$,
$J(k, \ell, n-k+1, n)$ is a k-of-n SDECC
Example: $n=8, k=3, n-k+1=6, \ell=0$ gives the 10-element code
(123), (345), (246), (156), (237), (147), (567), (138), (468), (378)

Lower bound: $\frac{\binom{n}{k}}{n-k+1} \leq|J(k, \ell, n-k+1, n)| \leq \max _{k}(n)$
Question: When is $|\mathrm{J}(k, \ell, n-k+1, n)|$ constant for different $\ell$ ?
Answer: If $k=p^{s}$ is a prime power, then exactly when $n \neq-1(\bmod p)$. For composites, when that holds for all prime power factors of $k$.

## Upper bound for $\max _{k}(\mathrm{n})$

For $2 \leq k \leq n / 2$,

$$
\begin{aligned}
& \frac{\binom{n}{k}}{n-k+1} \leq \\
& \quad \max _{k}(n) \leq \frac{1}{k}\binom{n-k+1}{k-1}+\frac{k-1}{k}\binom{n-k+1}{k-2}+O\left(n^{k-3}\right)
\end{aligned}
$$

$$
\frac{n^{2}-n}{6} \leq \max _{3}(n) \leq \frac{n^{2}-3}{6}
$$

| $n$ | LB | search | $\max _{3}(n)$ | UB |
| :---: | :---: | :---: | :---: | :---: |
| 6 | 5 | 5 | 5 | 5 |
| 7 | 7 | 7 | 7 | 7 |
| 8 | 10 | 10 | 10 | 10 |
| 9 | 12 | 13 | 13 | 13 |
| 10 | 15 | 16 | 16 | 16 |
| 11 | 19 | 19 | 19 | 19 |
| 12 | 22 | 23 | 23 | 23 |
| 13 | 26 | 27 | 27 | 27 |
| 14 | 31 |  | $?$ | 32 |
| 15 | 35 |  | $?$ | 37 |

The computer search values at $\mathrm{n}=12,13$ are larger than any $|J(3, \ell, n-2, n)|$

## 4-of-n SDECCs

$$
\frac{n(n-1)(n-2)}{24} \leq \max _{4}(n) \leq \frac{4 n^{3}-9 n^{2}+2 n-48}{96}
$$

| $n$ | LB | search | $\max _{4}(n)$ | UB |
| :---: | :---: | :---: | :---: | :---: |
| 8 | 14 | 14 | 14 | 15 |
| 9 | 22 | - | 22 | 22 |
| 10 | 30 | - | $?$ | 31 |
| 11 | 43 |  | 43 | 43 |
| 12 | 55 |  | $?$ | 58 |
| 13 | 73 |  | $?$ | 75 |
| 14 | 91 |  | $?$ | 95 |
| 15 | 116 |  | $?$ | 118 |

$$
\begin{aligned}
& \frac{n(n-1)(n-2)(n-3)}{120} \leq \max _{5}(n) \leq \frac{n^{4}-6 n^{3}+16 n^{2}-34 n-25}{120} \\
& \begin{array}{ccc}
n & \text { LB } & \text { UB } \\
\hline 10 & 42 & 43 \\
11 & 66 & 68 \\
12 & 99 & 101 \\
13 & 143 & 146 \\
14 & 201 & 204 \\
15 & 273 & 278
\end{array}
\end{aligned}
$$

## Remember

The main question remains:

$$
\text { Is } \max (\mathrm{n})=\left|V T_{0}(n)\right| ?
$$

## Alternating SDECCs

If $C_{k}$ is a k-of-n SDECC, then take $C=C_{0} \cup C_{2} \cup C_{4} \cup \cdots$

| $n$ | alternating | $\left\|\mathrm{VT}_{0}(n)\right\|$ | ratio |
| :---: | :---: | :---: | :---: |
| 6 | 10 | 10 | 1.00 |
| 7 | 13 | 16 | .78 |
| 8 | 26 | 30 | .87 |
| 9 | 43 | 52 | .83 |
| 10 | 72 | 94 | .77 |
| 11 | 137 | 172 | .79 |
| 12 | 260 | 316 | .82 |
| 13 | 469 | 586 | .80 |
| 14 | 865 | 1096 | .79 |
| 15 | 1647 | 2048 | .80 |
| 20 | 41,940 | 49,934 | .84 |
| 30 | $29,633,046$ | $34,636,832$ | .86 |
| 40 | $2.3615 \times 10^{10}$ | $2.6817 \times 10^{10}$ | .88 |
| 80 | $1.3630 \times 10^{22}$ | $1.49250 \times 10^{22}$ | .91 |

The global approach of the last slide was naive and optimistic. One can play this game locally and still lose.

Example: $\mathrm{VT}_{4}(12)$ has 22 codewords of weight 6 with $\rho(x)=30$. We can add two words of weight 6 with $\rho(x)=23$, viz., (123458) and (123467). But then we must remove from $\mathrm{VT}_{4}(12)$ two words of weight 7 with $\rho(x)=30$, (1234578) and (1234569), and two words of weight 5 with $\rho(x)=13$, (12347) and (12356).

In this way we obtain a SDECC of size $315+2-4=313$.

Let Top be all $x \in \mathrm{VT}_{0}(n)$ with $\mathrm{wt}(\mathrm{x}) \geq 4$ and do a computer search for a set Bottom of words of weight $\leq 3$ to find codes $C=$ Top $\cup$ Bottom such that $C$ is a SDECC with $|C| \geq\left|\mathrm{VT}_{0}(n)\right|$.
For $\mathrm{n}=12,13$ and 14 , this search yields only $\mathrm{VT}_{0}(n)$.
The program is slow but we are still looking.

We can ask the same questions about codes that correct multiple deletion/insertion errors.

A double deletion error correcting code (DDECC) is capable of correcting two deletion/insertion errors.

Example: 3-of-12 DDECC

$$
(1,2,3)(3,4,6)(2,6,7)(7,8,9)(6,9,11)(10,11,12)
$$

Let $\max _{k}^{2}(n)$ be the maximum size of a DDECC of length n and Hamming weight $k$.

$$
\frac{5 n-6}{9} \leq \max _{3}^{2}(n) \leq \frac{7 n-15}{9}
$$

| $n$ | $\max$ |
| :---: | :---: |
| 5 | 1 |
| 6 | 2 |
| 7 | 3 |
| 8 | 3 |
| 9 | 4 |
| 10 | 4 |
| 11 | 5 |
| 12 | 6 |
| 13 | 6 |

$$
(1,2,3)(3,4,6)(2,6,7)(7,8,9)(6,9,11)(10,11,12)
$$

## Quantum deletion codes

Quantum communication channels use qubits (think photons) instead of bits for messages.

Manabu Hagiwara has found a way to construct quantum deletion codes based on certain classical codes, such as Reed-Solomon codes. These codes can

- achieve any code rate $<1$, and
- correct multiple quantum deletion errors (think lost photons).


## Mahalo!



Bounds on the size of single deletion error correcting codes

