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Noisy communication channel

−→

Types of error
sent 10011
bit-flip: received 11011
erasure: received 1?011
deletion: received 1011
insertion: received 110011
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Example of SDECC

A single deletion error correcting code is capable of correcting
one deletion error.

n=5

C = { 00000,11100,10001,11011,01010,00111 }

Deletions:
00000→ 0000
11100→ 1100, 1110
10001→ 0001, 1001, 1000
11011→ 1011, 1111,1101
01010→ 1010, 0010, 0110, 0100, 0101
00111→ 0111, 0011
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Fundamental results

Let x ∈ 2n.
The deletion surface SD(x) is all y ∈ 2n−1 that are deletions of
x .
The insertion surface SI(x) is all z ∈ 2n+1 that are insertions
of x .

C ⊆ 2n is a single deletion error correcting code (SDECC) if
SD(x) ∩ SD(x ′) = ∅ whenever x 6= x ′, both in C.

Lemma: SD(x) ∩ SD(x ′) = ∅ iff SI(x) ∩ SI(x ′) = ∅

Levenshtein: A code C is capable of correcting t deletions iff it
is capable of correcting t insertions.

Levenshtein also gave a decoding algorithm to correct single
deletions from VT`(n). (Varshamov-Tenengolts codes)
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Notation

A word of Hamming weight k will be denoted x = (a1, . . . ,ak )
with a1 < a2 < · · · < ak giving the places where xj is 1. There
are

(n
k

)
such words.

For example, 10101000 is denoted (1,3,5), and there are(8
3

)
= 56 words of length 8 and weight 3.

We use the function ρ where, if the representation of x is
(a1, . . . ,ak ), then

ρ(x) = a1 + · · ·+ ak

and we will consider ρ(x) (mod m) for various m.
For example, ρ(1,3,5) = 9 = 3 (mod 6).
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The $64 Question

Q’n: What is max(n), largest size of SDECC of length n?

Conjecture: max(n) = |VT0(n)|

VT`(n) = {x ∈ 2n : ρ(x) = ` (mod n + 1)}

Example: VT0(5) = { ( ), (123), (15), (1245), (24), (345) }

VT`(n) is a SDECC
(if x and x ′ have a common deletion, then |ρ(x)− ρ(x ′)| ≤ n)

so |VT`(n)| is a lower bound on max(n).

2n

n + 1
≤ |VT0(n)| ≤ max(n) ≤ 2n

n
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Fun facts about VT codes

|VT`(n)| ≈
2n

n + 1

|VT0(n)| ≥ |VT`(n)| ≥ |VT1(n)|

|VT0(n)| = |VT1(n)| iff n+1 is a power of 2

|VT0(n)| =
1

2(n + 1)

∑
d |n=1,d odd

φ(d)2
n+1

d

Each VT`(n) is a perfect code

max(n) = |VT0(n)| for n ≤ 10
(Sloane, Applegate, Butenko et al.)
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Exciting new result of No, Nakasho

n |VT0(n)| max(n) UB

2 2 2 2
3 2 2 2
4 4 4 4
5 6 6 6
6 10 10 10
7 16 16 16
8 30 30 30
9 52 52 52

10 94 94 94
11 172 172 172
12 316 ? 320
13 586 ? 593
14 1096 ? 1104
15 2048 ? 2184
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Non-uniqueness

Note that VT0(n) is not unique as the largest known SDECC of
length n.

x = 000101111 · · ·
y = 000001111 . . .

If x is in a SDECC, then it can be replaced by y to obtain
another SDECC of the same size since SD(y) ⊂ SD(x)

(This observation of Sloane has been generalized by Kondo)
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How it got down to 172

Make a graph G = (V,E)
V=2n, all binary words of length n
(u, v) is an edge if u and v have a common deletion

E.g., with n=3, the vertices 000, 100, 010, 001 would be
pairwise connected by edges because they have the common
deletion 00.

SDECCs correspond to independent sets in G

Given a SDECC C, let

xj =

{
1 if j ∈ C,
0 otherwise

Size problem: Maximize
∑

i∈2n xi subject to

(†) ∀i ∈ 2n xi ∈ {0,1} and xi + xj ≤ 1 whenever (i , j) ∈ E
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How it got down to 172

Size problem: Maximize
∑

i∈2n xi subject to

(†) ∀i ∈ 2n xi ∈ {0,1} and xi + xj ≤ 1 whenever (i , j) ∈ E

Change it to a linear programming problem:
Maximize

∑
i∈2n xi subject to

(‡) ∀i ∈ 2n 0 ≤ xi ≤ 1 and xi + xj ≤ 1 whenever (i , j) ∈ E

Actually, that’s not good enough. You have to use Mixed Integer
Programming with (†) for some edges and (‡) for others. Using
the graph for n = 11:

Albert No (2019):
∑

xi ≤ 173.99

Kazuhisa Nakasho (2023):
∑

xi ≤ 172.99

Hence max(11)=172
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k-of-n SDECCs

C is a k-of-n code if every x ∈ C has Hamming weight k

Example: a 3-of-8 SDECC with 10 codewords

C =(123), (345), (246), (156), (237), (147), (567), (138), (468), (378)
=11100000,00111000,01010100,10001100,01100010,

10010010,00001110,10100001,00010101,00100011

maxk (n) is the maximum size of a k-of-n SDECC
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2-of-n SDECCs

max2(n) =
⌊

3n − 2
4

⌋
n max2(n)

4 2
5 3
6 4
7 4
8 5
9 6

10 7
11 7
12 8
13 9

(1,2) (3,4) (2,5) (5,6) (7,8) (6,9) (9,10) . . .

C = {(i , j) ∈ 2n : i + j = 3 (mod 4) and j − i ≤ 3}.
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Sketch of proof of upper bound for max2(n)

Let C be a 2-of-n SDECC of length n.
a good codeword is of the form (k , k + 1)
a bad codeword is of the form (k ,b) with b > k + 1

so that |C| = g + b.
No two codewords have a common deletion, and you cannot
have consecutive good codewords.

g ≤ n
2

g + 2b ≤ n − 1

(RHS is the number of weight 1 words of length n-1)
Adding, we get

2g + 2b ≤ 3n − 2
2

whence
|C| ≤ 3n − 2

4
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VT-like k-of-n SDECCs

Following R. Graham and Sloane:

J(k , `,m,n) = {x ∈ 2n : wt(x) = k and ρ(x) = ` (mod m)}.

For 2 ≤ k ≤ n/2,
J(k , `,n − k + 1,n) is a k-of-n SDECC

Example: n = 8, k = 3, n − k + 1 = 6, ` = 0 gives the
10-element code

(123), (345), (246), (156), (237), (147), (567), (138), (468), (378)

Lower bound:
(n

k

)
n − k + 1

≤ |J(k , `,n − k + 1,n)| ≤ maxk (n)

Question: When is | J(k , `,n− k +1,n)| constant for different `?

Answer: If k = ps is a prime power, then exactly when
n 6= −1 (mod p). For composites, when that holds for all prime
power factors of k .
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Upper bound for maxk (n)

For 2 ≤ k ≤ n/2,(
n
k

)
n − k + 1

≤

maxk (n) ≤
1
k

(
n − k + 1

k − 1

)
+

k − 1
k

(
n − k + 1

k − 2

)
+ O(nk−3)
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3-of-n SDECCs

n2 − n
6

≤ max3(n) ≤
n2 − 3

6

n LB search max3(n) UB

6 5 5 5 5
7 7 7 7 7
8 10 10 10 10
9 12 13 13 13

10 15 16 16 16
11 19 19 19 19
12 22 23 23 23
13 26 27 27 27
14 31 ? 32
15 35 ? 37

The computer search values at n=12, 13 are larger than any
|J(3, `,n − 2,n)|
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4-of-n SDECCs

n(n − 1)(n − 2)
24

≤ max4(n) ≤
4n3 − 9n2 + 2n − 48

96

n LB search max4(n) UB

8 14 14 14 15
9 22 − 22 22

10 30 − ? 31
11 43 43 43
12 55 ? 58
13 73 ? 75
14 91 ? 95
15 116 ? 118
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5-of-n SDECCs

n(n − 1)(n − 2)(n − 3)
120

≤ max5(n) ≤
n4 − 6n3 + 16n2 − 34n − 25

120

n LB UB

10 42 43
11 66 68
12 99 101
13 143 146
14 201 204
15 273 278
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Remember

The main question remains:

Is max(n) = |VT0(n)|?
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Alternating SDECCs

If Ck is a k-of-n SDECC, then take C = C0 ∪ C2 ∪ C4 ∪ · · ·
n alternating |VT0(n)| ratio

6 10 10 1.00
7 13 16 .78
8 26 30 .87
9 43 52 .83

10 72 94 .77
11 137 172 .79
12 260 316 .82
13 469 586 .80
14 865 1096 .79
15 1647 2048 .80
20 41,940 49,934 .84
30 29,633,046 34,636,832 .86
40 2.3615× 1010 2.6817× 1010 .88
80 1.3630× 1022 1.49250× 1022 .91
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Try #2

The global approach of the last slide was naive and optimistic.
One can play this game locally and still lose.

Example: VT4(12) has 22 codewords of weight 6 with
ρ(x) = 30. We can add two words of weight 6 with ρ(x) = 23,
viz., (123458) and (123467). But then we must remove from
VT4(12) two words of weight 7 with ρ(x) = 30, (1234578) and
(1234569), and two words of weight 5 with ρ(x) = 13, (12347)
and (12356).

In this way we obtain a SDECC of size 315 + 2− 4 = 313.
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Try #3

Let Top be all x ∈ VT0(n) with wt(x) ≥ 4 and do a computer
search for a set Bottom of words of weight ≤ 3 to find codes
C = Top ∪ Bottom such that C is a SDECC with |C| ≥ |VT0(n)|.

For n=12, 13 and 14, this search yields only VT0(n).

The program is slow but we are still looking.
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k-of-n DDECCs

We can ask the same questions about codes that correct
multiple deletion/insertion errors.

A double deletion error correcting code (DDECC) is capable of
correcting two deletion/insertion errors.

Example: 3-of-12 DDECC

(1,2,3) (3,4,6) (2,6,7) (7,8,9) (6,9,11) (10,11,12)

Let max2
k (n) be the maximum size of a DDECC of length n and

Hamming weight k.
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3-of-n DDECCs

5n − 6
9

≤ max2
3(n) ≤

7n − 15
9

n max

5 1
6 2
7 3
8 3
9 4

10 4
11 5
12 6
13 6

(1,2,3) (3,4,6) (2,6,7) (7,8,9) (6,9,11) (10,11,12)
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Quantum deletion codes

Quantum communication channels use qubits (think photons)
instead of bits for messages.

Manabu Hagiwara has found a way to construct quantum
deletion codes based on certain classical codes, such as
Reed-Solomon codes. These codes can

achieve any code rate < 1, and
correct multiple quantum deletion errors (think lost
photons).
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Mahalo!
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