Bounds on the size of single deletion error correcting codes

NYCS, April 14, 2023

This is a survey talk with some new results.

Seminar and friends:

Austin Anderson

Quinn Culver

Manabu Hagiwara

Ellen Hughes

Justin Kong

Kazuhisa Nakasho

J. B. Nation

Classical sources:

V. I. Levenshtein

N. J. A. Sloane

A. A. Kulkarni and N. Kiyavash

Japan

Hawai'i

Noisy communication channel

Types of error

sent 10011

bit-flip: received 11011

erasure: received 1?011

deletion: received 1011

insertion: received 110011

Example of SDECC

A single deletion error correcting code is capable of correcting one deletion error.

```
n=5   C = \{\ 00000, 11100, 10001, 11011, 01010, 00111\ \}
```

Deletions:

- ullet 00000 ightarrow 0000
- $11100 \rightarrow 1100, 1110$
- $10001 \rightarrow 0001, 1001, 1000$
- ullet 11011 o 1011, 1111,1101
- ullet 01010 o 1010, 0010, 0110, 0100, 0101
- ullet 00111 o 0111, 0011

Fundamental results

Let $x \in 2^n$.

The **deletion surface** $S_D(x)$ is all $y \in 2^{n-1}$ that are deletions of x.

The **insertion surface** $S_l(x)$ is all $z \in 2^{n+1}$ that are insertions of x.

 $C \subseteq 2^n$ is a single deletion error correcting code (SDECC) if $S_D(x) \cap S_D(x') = \emptyset$ whenever $x \neq x'$, both in C.

Lemma:
$$S_D(x) \cap S_D(x') = \emptyset$$
 iff $S_I(x) \cap S_I(x') = \emptyset$

Levenshtein: A code C is capable of correcting t deletions iff it is capable of correcting t insertions.

Levenshtein also gave a decoding algorithm to correct single deletions from $VT_{\ell}(n)$. (Varshamov-Tenengolts codes)

Notation

A word of Hamming weight k will be denoted $x = (a_1, ..., a_k)$ with $a_1 < a_2 < \cdots < a_k$ giving the places where x_j is 1. There are $\binom{n}{k}$ such words.

For example, 10101000 is denoted (1,3,5), and there are $\binom{8}{3} = 56$ words of length 8 and weight 3.

We use the function ρ where, if the representation of x is (a_1, \ldots, a_k) , then

$$\rho(x)=a_1+\cdots+a_k$$

and we will consider $\rho(x)$ (mod m) for various m. For example, $\rho(1,3,5) = 9 = 3 \pmod{6}$.

The \$64 Question

Q'n: What is max(n), largest size of SDECC of length n?

Conjecture:
$$\max(n) = |VT_0(n)|$$

$$\mathsf{VT}_\ell(n) = \{x \in 2^n : \rho(x) = \ell \; (\mathsf{mod} \; n+1)\}$$

Example: $VT_0(5) = \{ (), (123), (15), (1245), (24), (345) \}$

$VT_{\ell}(n)$ is a SDECC

(if x and x' have a common deletion, then $|\rho(x) - \rho(x')| \le n$) so $|VT_{\ell}(n)|$ is a lower bound on $\max(n)$.

$$\frac{2^n}{n+1} \le |VT_0(n)| \le \max(n) \le \frac{2^n}{n}$$

Fun facts about VT codes

$$|\mathsf{VT}_\ell(n)| pprox rac{2^n}{n+1}$$
 $|\mathsf{VT}_0(n)| \geq |\mathsf{VT}_\ell(n)| \geq |\mathsf{VT}_1(n)|$ If $|\mathsf{VT}_0(n)| = |\mathsf{VT}_1(n)|$ iff $|\mathsf{v}| = |\mathsf{v}|$ is a power

$$|VT_0(n)| = |VT_1(n)|$$
 iff n+1 is a power of 2

$$|VT_0(n)| = \frac{1}{2(n+1)} \sum_{d|n=1,d \text{ odd}} \phi(d) 2^{\frac{n+1}{d}}$$

Each $VT_{\ell}(n)$ is a perfect code

$$max(n) = |VT_0(n)|$$
 for $n \le 10$ (Sloane, Applegate, Butenko et al.)

Exciting new result of No, Nakasho

n	$ VT_0(n) $	max(n)	UB
2	2	2	2
3	2	2	2
4	4	4	4
5	6	6	6
6	10	10	10
7	16	16	16
8	30	30	30
9	52	52	52
10	94	94	94
11	172	172	172
12	316	?	320
13	586	?	593
14	1096	?	1104
15	2048	?	2184

Non-uniqueness

Note that $VT_0(n)$ is not unique as the largest known SDECC of length n.

$$x = 0001011111 \cdots$$

 $y = 000001111 \ldots$

If x is in a SDECC, then it can be replaced by y to obtain another SDECC of the same size since $S_D(y) \subset S_D(x)$

(This observation of Sloane has been generalized by Kondo)

How it got down to 172

Make a graph G = (V,E)

- V=2ⁿ, all binary words of length n
- \bullet (u, v) is an edge if u and v have a common deletion

E.g., with n=3, the vertices 000, 100, 010, 001 would be pairwise connected by edges because they have the common deletion 00.

SDECCs correspond to independent sets in G

Given a SDECC C, let

$$x_j = \begin{cases} 1 & \text{if } j \in C, \\ 0 & \text{otherwise} \end{cases}$$

Size problem: Maximize $\sum_{i \in 2^n} x_i$ subject to

(†)
$$\forall i \in 2^n \ x_i \in \{0,1\} \ \text{and} \ x_i + x_j \le 1 \ \text{whenever} \ (i,j) \in E$$

How it got down to 172

Size problem: Maximize $\sum_{i \in 2^n} x_i$ subject to

(†)
$$\forall i \in 2^n \ x_i \in \{0,1\} \text{ and } x_i + x_j \leq 1 \text{ whenever } (i,j) \in E$$

Change it to a linear programming problem:

Maximize $\sum_{i \in 2^n} x_i$ subject to

(‡)
$$\forall i \in 2^n \ 0 \le x_i \le 1 \ \text{and} \ x_i + x_j \le 1 \ \text{whenever} \ (i,j) \in E$$

Actually, that's not good enough. You have to use Mixed Integer Programming with (\dagger) for some edges and (\dagger) for others. Using the graph for n=11:

Albert No (2019): $\sum x_i \le 173.99$

Kazuhisa Nakasho (2023): $\sum x_i \le 172.99$

Hence max(11)=172

C is a k-of-n code if every $x \in C$ has Hamming weight k

Example: a 3-of-8 SDECC with 10 codewords

$$C = (123), (345), (246), (156), (237), (147), (567), (138), (468), (378)$$

=11100000, 00111000, 01010100, 10001100, 01100010,
10010010, 00001110, 10100001, 00010101, 00100011

 $\max_{k}(n)$ is the maximum size of a k-of-n SDECC

$$\max_{2}(n) = \left\lfloor \frac{3n-2}{4} \right\rfloor$$

$$\frac{n \quad \max_{2}(n)}{4}$$

$$4 \quad 2$$

$$5 \quad 3$$

$$6 \quad 4$$

$$7 \quad 4$$

$$8 \quad 5$$

$$9 \quad 6$$

$$10 \quad 7$$

$$11 \quad 7$$

$$12 \quad 8$$

$$13 \quad 9$$

$$(1,2) \quad (3,4) \quad (2,5) \quad (5,6) \quad (7,8) \quad (6,9) \quad (9,10) \quad \dots$$

$$C = \{(i,j) \in 2^n : i+j = 3 \pmod{4} \text{ and } j-i \leq 3\}.$$

Sketch of proof of upper bound for max₂(n)

Let C be a 2-of-n SDECC of length n.

- a good codeword is of the form (k, k + 1)
- a *bad* codeword is of the form (k, b) with b > k + 1 so that |C| = g + b.

No two codewords have a common deletion, and you cannot have consecutive good codewords.

$$g \le \frac{n}{2}$$
$$g + 2b \le n - 1$$

(RHS is the number of weight 1 words of length n-1)

Adding, we get

$$2g+2b\leq \frac{3n-2}{2}$$

whence

$$|C| \leq \frac{3n-2}{4}$$

VT-like k-of-n SDECCs

Following R. Graham and Sloane:

$$J(k,\ell,m,n)=\{x\in 2^n: \operatorname{wt}(x)=k \text{ and } \rho(x)=\ell \text{ (mod } m)\}.$$

For
$$2 \le k \le n/2$$
,

 $J(k, \ell, n - \overline{k} + 1, n)$ is a k-of-n SDECC

Example: n = 8, k = 3, n - k + 1 = 6, $\ell = 0$ gives the 10-element code

$$(123), (345), (246), (156), (237), (147), (567), (138), (468), (378) \\$$

Lower bound:
$$\frac{\binom{n}{k}}{n-k+1} \leq |J(k,\ell,n-k+1,n)| \leq \max_{k}(n)$$

Question: When is $|J(k, \ell, n-k+1, n)|$ constant for different ℓ ?

Answer: If $k = p^s$ is a prime power, then exactly when $n \neq -1 \pmod{p}$. For composites, when that holds for all prime power factors of k.

Upper bound for $\max_{k}(n)$

For
$$2 \le k \le n/2$$
,

$$\frac{\frac{k}{k+1}}{\max_{k}(n)} \le \frac{1}{k} \binom{n-k+1}{k-1} + \frac{k-1}{k} \binom{n-k+1}{k-2} + O(n^{k-3})$$

$$\frac{n^2 - n}{6} \le \max_3(n) \le \frac{n^2 - 3}{6}$$

$$\frac{n}{6} = \frac{5}{6}$$

$$\frac{5}{7} = \frac{5}{7}$$

$$\frac{7}{7} = \frac{7}{7}$$

$$\frac{8}{7} = \frac{10}{10}$$

$$\frac{10}{10} = \frac{10}{10}$$

$$\frac{10}$$

The computer search values at n=12, 13 are larger than any $|J(3, \ell, n-2, n)|$

15

35

37

$$\frac{n(n-1)(n-2)}{24} \leq \text{max}_4(n) \leq \frac{4n^3 - 9n^2 + 2n - 48}{96}$$

n	LB	search	$\max_4(n)$	UB
8	14	14	14	15
9	22	_	22	22
10	30	_	?	31
11	43		43	43
12	55		?	58
13	73		?	75
14	91		?	95
15	116		?	118

$$\frac{n(n-1)(n-2)(n-3)}{120} \leq \max_5(n) \leq \frac{n^4 - 6n^3 + 16n^2 - 34n - 25}{120}$$

n	LB	UB
10	42	43
11	66	68
12	99	101
13	143	146
14	201	204
15	273	278

Remember

The main question remains:

Is
$$\max(n) = |VT_0(n)|$$
?

Alternating SDECCs

If C_k is a k-of-n SDECC, then take $C = C_0 \cup C_2 \cup C_4 \cup \cdots$

n	alternating	VT ₀ (<i>n</i>)	ratio
6	10	10	1.00
7	13	16	.78
8	26	30	.87
9	43	52	.83
10	72	94	.77
11	137	172	.79
12	260	316	.82
13	469	586	.80
14	865	1096	.79
15	1647	2048	.80
20	41,940	49,934	.84
30	29, 633, 046	34, 636, 832	.86
40	2.3615×10^{10}	2.6817×10^{10}	.88
80	1.3630×10^{22}	1.49250×10^{22}	.91

Try #2

The global approach of the last slide was naive and optimistic. One can play this game locally and still lose.

Example: VT₄(12) has 22 codewords of weight 6 with $\rho(x)=30$. We can add two words of weight 6 with $\rho(x)=23$, viz., (123458) and (123467). But then we must remove from VT₄(12) two words of weight 7 with $\rho(x)=30$, (1234578) and (1234569), and two words of weight 5 with $\rho(x)=13$, (12347) and (12356).

In this way we obtain a SDECC of size 315 + 2 - 4 = 313.

Try #3

Let Top be all $x \in VT_0(n)$ with $wt(x) \ge 4$ and do a computer search for a set Bottom of words of weight ≤ 3 to find codes $C = \text{Top} \cup \text{Bottom}$ such that C is a SDECC with $|C| \ge |VT_0(n)|$.

For n=12, 13 and 14, this search yields only $VT_0(n)$.

The program is slow but we are still looking.

k-of-n DDECCs

We can ask the same questions about codes that correct multiple deletion/insertion errors.

A double deletion error correcting code (DDECC) is capable of correcting two deletion/insertion errors.

Example: 3-of-12 DDECC

$$(1,2,3)$$
 $(3,4,6)$ $(2,6,7)$ $(7,8,9)$ $(6,9,11)$ $(10,11,12)$

Let $\max_{k}^{2}(n)$ be the maximum size of a DDECC of length n and Hamming weight k.

$$\frac{5n-6}{9}\leq \max_3^2(n)\leq \frac{7n-15}{9}$$

n	max	
5	1	
6	2	
7	3	
8	3	
9	4	
10	4	
11	5	
12	6	
13	6	

$$(1,2,3)$$
 $(3,4,6)$ $(2,6,7)$ $(7,8,9)$ $(6,9,11)$ $(10,11,12)$

Quantum deletion codes

Quantum communication channels use *qubits* (think photons) instead of bits for messages.

Manabu Hagiwara has found a way to construct quantum deletion codes based on certain classical codes, such as Reed-Solomon codes. These codes can

- achieve any code rate < 1, and
- correct multiple quantum deletion errors (think lost photons).

Mahalo!

