A Simple Semidistributive Lattice

Ralph Freese and J. B. Nation
University of Hawai'i at Mānoa
General Algebra Seminar
Latrobe University, June 2020

This is a lattice

This is a 2-element lattice

This is a lattice homomorphism onto 2

Prime ideals and filters

If $h: L \rightarrow 2$, then $h^{-1}(0)$ is a prime ideal

- $x \leq y \in I \rightarrow x \in I$
- $x, y \in I \rightarrow x \vee y \in I$
- $x \wedge y \in I \rightarrow x \in I$ or $y \in I$.

Its complement $h^{-1}(1)$ is a prime filter

- $x \leq y \in F \rightarrow x \in F$
- $x, y \in F \rightarrow x \wedge y \in F$
- $x \vee y \in F \rightarrow x \in F$ or $y \in F$.

There is a bijection between proper prime ideals of L and homomorphisms $h: L \rightarrow 2$.

Distributive lattices

A lattice is distributive if it satisfies

$$
x \wedge(y \vee z) \approx(x \wedge y) \vee(x \wedge z)
$$

Prime ideals in distributive lattices

Distributive lattices get choke prime ideals:
If $x \neq 0$, then every ideal that is maximal with respect to $x \notin I$ is prime.
On the other hand, the non-distributive lattice M_{3} has none. It is simple and has NO proper, nontrivial homomorphic image.

Join prime elements

An element $p \in L$ is join prime if $x \vee y \geq p \rightarrow x \geq p$ or $y \geq p$. That makes $\{x: x \nsupseteq p\}$ a prime ideal.

A finite lattice is distributive iff every join irreducible element is join prime.

Semidistributive lattices

A lattice is join semidistributive if it satisfies

$$
\left(\mathrm{SD}_{\vee}\right) \quad x \vee y \approx x \vee z \rightarrow x \vee y \approx x \vee(y \wedge z)
$$

Meet semidistributive is the dual. Semidistributive is both.

Jónsson and Rival: minimal $\left(S D_{\vee}\right)$ failures

If L fails $\left(\mathrm{SD}_{\vee}\right)$, then one of these embeds into $\operatorname{Fil}(\operatorname{Id}(L))$.

McKenzie's question

Is there a simple semidistributive lattice with more than 2 elements?

Classical theorem

If a join semidistributive lattice has a largest element 1 , then it has a prime ideal.

Proof: Let / be an ideal maximal with respect to $1 \notin I$.
If $x, y \notin I$, then there is an $i \in I$ such that $i \vee x=i \vee y=1$.
Then (SD $)$ gives $i \vee(x \wedge y)=1$, whence $x \wedge y \notin I$.
Corollary: There is no simple, finite, join semidistributive lattice except 2.

Where does semidistributivity come from? (not the stork)

- Skolem and Whitman solved the word problem for free lattices.
- Every $w \in \mathrm{FL}(X)$ is either join irreducible or has a canonical join representation $w=w_{1} \vee \ldots \vee w_{k}$ such that $\left\{w_{1}, \ldots, w_{k}\right\}$ refines every other join representation.
- This implies $\left(\mathrm{SD}_{\vee}\right)$.

Jónsson and Kiefer

The following are equivalent for a finite lattice.

- L satisfies

$$
\left(\mathrm{SD}_{\vee}\right) \quad x \vee y \approx x \vee z \rightarrow x \vee y \approx x \vee(y \wedge z)
$$

- L satisfies

$$
(\mathrm{SD} \vee)^{\prime} \quad w \approx \bigvee_{i} x_{i} \approx \bigvee_{j} y_{j} \rightarrow w \approx \bigvee_{i, j}\left(x_{i} \wedge y_{j}\right)
$$

- Every $w \in L$ is either join irreducible or has a canonical join representation.
Moreover, the canonical joinands of 1 are join prime.

Convex geometries

The following are equivalent for a finite lattice.

- L is join semidistributive and lower semimodular.
- Every element of L has a unique irredundant join decomposition.
- L is the closure lattice for an operator with the Anti-exchange Property.
- (many others)

The join prime elements of a finite convex geometry are its extreme points.

The lattice of convex subsets of a 4-element chain

$\mathrm{Co}(4)$

Day's Lemma

If L is a finite lattice and

- $p \in J(L)$,
- $p \leq \bigvee Q$ is a minimal nontrivial join cover, then $\operatorname{con}\left(p, p_{*}\right) \leq \operatorname{con}\left(q, q_{*}\right)$ for each $q \in Q$.

Congruence relations on $\mathrm{Co}(n)$

$\mathrm{Co}(4)$

Wehrung's example

Let $\mathrm{FCo}(\mathbb{Z})$ denote the finite convex subsets of the integers.

- $\mathrm{FCo}(\mathbb{Z})$ is a join semidistributive lattice with no largest element.
- It is simple.

But it is not meet semidistributive.

Join semilattice presentation of FCo(Z)

- Generated by an antichain of join irreducibles $a_{i}(i \in \mathbb{Z})$
- $a_{i} \leq a_{i-1} \vee a_{i+1}$ for all i
- $F=\bigcup_{n} F_{n}$ where $F_{n}=\operatorname{Co}[-n, n]$

Our example K : the join irreducibles

Our example K: the join relations

For all $i \in \mathbb{Z}$,
(1) $a_{i} \leq b_{i-1} \vee c_{i-1}$
(2) $b_{i} \leq e_{i} \vee a_{i+2}$
(3) $c_{i} \leq a_{i} \vee d_{i-1}$
(4) $d_{i} \leq f_{i} \vee c_{i+2}$
(5) $e_{i} \leq a_{i} \vee e_{i-1}$
(6) $f_{i} \leq c_{i} \vee f_{i-1}$
(7) $b_{i} \leq e_{i} \vee b_{i+1}$
(8) $d_{i} \leq f_{i} \vee d_{i+1}$

Example

K is a simple semidistributive lattice.

Example

K is a simple semidistributive lattice. BUT WHY SHOULD YOU BELIEVE US?

In their early work on free lattices, Freese and Nation often had to put specific terms into canonical form. Whitman's algorithm for this, while efficient ... is tedious for humans. Freese used the following alternate procedure: he would stare at the term, looking for any obvious reason it was not in canonical form. If he could not find any such reason, he would take the term to Nation, whose office is one floor higher, and ask him to look at it. Nation used a dual procedure. The inadequacy of this procedure led us to develop computer programs to calculate in free lattices.

Checking the calculations

Let K be the lattice described above.

- $K=\bigcup_{n} K_{n}$ where K_{n} is the finite interval

$$
\left[a_{-n}, b_{-n} \vee \cdots \vee b_{n-1} \vee d_{-n} \vee \cdots \vee d_{n-1}\right] \text { in } K
$$

- Ralph's programs for calculations in finitely presented lattices checked the claims of the proof in K_{n} for small n.

Minimal nontrivial join covers

First, we check that the rules (1)-(8) really are m.n.t.j.c.'s, i.e. for a rule $x \leq y \vee z$ that $x \not \leq y_{*} \vee z$ and $x \not \leq y \vee z_{*}$. E.g., rule (1):

$$
a_{i} \leq b_{i-1} \vee c_{i-1}
$$

but

$$
\begin{aligned}
& a_{i} \leq e_{i-1} \vee c_{i-1} \\
& a_{i} \not \leq b_{i-1} \vee a_{i-1}
\end{aligned}
$$

This ensures that K is simple.

A finite lattice satisfies $\left(\mathrm{SD}_{\wedge}\right)$ iff for each $p \in \mathrm{~J}(L)$ there is an element $\kappa(p)$ which is maximal w.r.t. $x \geq p_{*}$ but $x \nsupseteq p$.

If L is meet semidistributive, then $\kappa: J(L) \rightarrow \mathrm{M}(L)$ is surjective.

Both ways semidistributivity

A finite lattice satisfies both semidistributive laws iff $\kappa: \mathrm{J}(L) \rightarrow \mathrm{M}(L)$ is a bijection.

In this example, the map κ is defined, so $\left(\mathrm{SD}_{\wedge}\right)$ holds, but not $\left(\mathrm{SD}_{\vee}\right)$ since $\kappa(p)=\kappa(q)$.

Calculations

Recall that our example is a union of intervals, $K=\bigcup_{n} K_{n}$. The program checks that our hand calculations of κ on K_{n} are correct, e.g.,

$$
\kappa\left(a_{i}\right)=b_{-n} \vee \ldots \vee b_{i-2} \vee d_{-n} \vee \ldots \vee d_{i-1} \vee e_{i-1}
$$

so that κ is a bijection.

Mahalo

