## Math 203: HW 7

Due on Fiday, June 14
Summer '13

John "Curlee" Robertson

## Problem 1

Assume that population growth satisfies the differential equation $P^{\prime}(t)=k P(t)$. (note that this means that $P(t)=\alpha e^{k t}$ for some $k$, we can use the information below to find $\left.k\right)$. At $t=0$, there are 15 elephants. Then at $t=10$, there are 60 elephants. What is the population equation, $P(t)$ ? How many elephants should we expect at $t=50$ ?

Now suppose that the elephants are dying off, and the differential equation is $P^{\prime}(t)=-\lambda P(t)$ (note that this means that $P(t)=\alpha e^{-k t}$ ). This time we start with 60 elephants (when $t=0$ ), and there are 15 elephants when $t=10$. How many elephants should we expect at $t=50$ ?

## Problem 2

Take the derivative of the following:

$$
\begin{gathered}
f(x)=\frac{e^{x}}{\ln \left(x^{2}\right)} \\
g(x)=e^{\left(x^{2}+1+2\right)} \ln \left(15 x^{2}\right)
\end{gathered}
$$

