Math 241, Spring 2012
Final Exam

Name:
Instructor:

Instructions: Write legibly. To earn full credit, you must show enough of your work to justify your answers. Turn off and store all of your electronic devices; this includes calculators, cell phones, tablets and music players. All work should be your own.

Problem	Worth	Score
1	20	
2	10	
3	10	
4	20	
5	10	
6	10	
7	20	
8	10	
9	20	
10	10	
11	10	
12	10	
Total	160	

Extra Credit (5 points). Evaluate the following derivative: $\quad \frac{d}{d x} \int_{x^{2}}^{\sin x} \sqrt{1+t^{2}} d t$.

Problem 1 (20 points). Evaluate each of the following limits or show that they do not exist. Show your work!
(a) $\lim _{x \rightarrow-2} \frac{x^{2}-4 x+5}{x^{2}-2}$
(b) $\lim _{x \rightarrow 2^{-}} \frac{x^{2}-4}{|x+2|}$
(c) $\lim _{x \rightarrow \infty} \frac{\sin \left(x^{2}\right)}{\sqrt{x}}$
(d) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}$

Problem 2 (10 points). A particle moves in a straight line along the s-axis. At time t, its acceleration is $a(t)=-6 t+2$. Its position and velocity at time $t=4$ are $s(4)=1$ and $v(4)=1$, respectively. Find the position function $s(t)$.

Problem 3 (10 points). Find an equation for the tangent line to the curve given by

$$
2 x^{2} y-3 x y^{2}=16
$$

at the point $(-1,2)$.

Problem 4 (20 points). Find the derivative of each of the following functions.
Do not simplify!
(a) $f(x)=\sqrt{5+\frac{2}{x^{6}}}$
(b) $g(x)=x^{7} \tan x$
(c) $h(x)=\frac{\cos (7 \sin x)}{8+\sec (2 x)}$
(d) $j(x)=\int_{2}^{x} \frac{t^{5}}{7+t^{8}} d t$.

Problem 5 (10 points). Consider the equation $x^{3}-7 x+1=0$.
(a) Does this equation have a solution in the interval [2, 3]? Justify your answer.
(b) Does this equation have more than one solution in this interval?

Problem 6 (10 points). Using the limit definition of the derivative, find the derivative of

$$
f(x)=x^{2}+3 x+1
$$

at $x=2$. To receive credit, you must show your work. It is not acceptable to use differentiation rules.

Problem 7 (20 points). Below you are given a function $f(x)$ and its first and second derivatives. Use this information to solve the following problems.

$$
f(x)=\frac{x^{2}-4}{x^{2}+1} \quad f^{\prime}(x)=\frac{10 x}{\left(x^{2}+1\right)^{2}} \quad f^{\prime \prime}(x)=\frac{10\left(1-3 x^{2}\right)}{\left(x^{2}+1\right)^{3}}
$$

(a) Find the global maximum and minimum value of $f(x)$ on the interval $[-2,3]$. Show your work!
(b) Determine the intervals where the function is increasing and the intervals where it is decreasing.
(c) Find the x-coordinate of each local extremum (local maximum and minimum).
(d) Determine the intervals where the function is concave up and the intervals where it is concave down.
(e) Determine the x-values where the inflection points occur.
(f) Determine all vertical and horizontal asymptotes.
(g) Sketch the graph of $y=f(x)$.

Problem 8 (10 points). A box with no top is constructed by cutting equal-sized squares from the corners of a $12 \mathrm{~cm} \times 12 \mathrm{~cm}$ sheet of metal and bending up the sides. What is the largest possible volume of such a box?

Problem 9 (20 points). Evaluate the following integrals. Show your work!
(a) $\int_{-1}^{1}\left(x^{3}-x\right) d x$
(b) $\int \frac{d x}{\cos ^{2} x}$
(c) $\int_{0}^{2} x \sqrt{9-2 x^{2}} d x$
(d) $\int \frac{2 x^{2}-3 x}{x} d x$

Problem 10 (10 points). A parallelogram has fixed side lengths 8 cm and 12 cm . The indicated angle θ is increasing at a rate of $\pi / 4$ radians per second. How fast is the area changing when $\theta=\pi / 3$ radians?

Problem 11 (10 points). Consider the shaded region of the plane pictured below. It is bounded on the left by the y-axis, below by the line $y=x$, and above by the graph of $y=2+\sqrt{4-x^{2}}$.

(a) Express the area of the shaded region using one or more unevaluated definite integrals.
(b) Find the volume of the solid of revolution given by rotating the shaded region about the y-axis.

Problem 12 (10 points). Determine the values of the parameters a and b such that the following function $f(x)$ becomes continuous and differentiable at $x=2$:

$$
f(x)= \begin{cases}x^{2}-2 x+b & \text { for } x>2 \\ a x & \text { for } x \leq 2\end{cases}
$$

