Math 242: HW 10

Due on Monday, July 28 Summer~'14

 ${\bf John}\ "Curlee"\ {\bf Robertson}$

Problem 1

Show that $\sum_{n=1}^{\infty} \frac{(-1)^n}{1+\sqrt[3]{n}}$ is a conditionally convergent series.

Problem 2

Show that $\sum_{n=1}^{\infty} \frac{(-1)^n}{1+\sqrt[3]{n^4}}$ is an absolutely convergent series.

Problem 3

Determine if the following series are conditionally convergent, absolutely convergent or divergent.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n}}$$

$$\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln(n)}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{n+1}$$

$$\sum_{n=1}^{\infty} \frac{(-10)^n}{n!}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{(2n)!}$$

$$\sum_{n=1}^{\infty} \frac{\sin\left((-1)^n n^{15}\right)}{n^3}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{(2n)!}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n (2n)!}{(n!)^2}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n \ln(n)}{n - \ln(n)}$$

Problem 4

Give an example of two convergent series, $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$, such that $\sum_{n=1}^{\infty} a_n b_n$ does not converge.

Problem 5

Give an example of two divergent series, $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$, such that $\sum_{n=1}^{\infty} a_n b_n$ converges.