Math 242: HW 11

Due on Thursday, July 31
Summer '14

John "Curlee" Robertson

Problem 1

Use the ratio test to show that $\sum_{n=1}^{\infty} \frac{(2 x)^{n}}{\sqrt{n}}$ converges absolutely for any $x \in\left(-\frac{1}{2}, \frac{1}{2}\right)$ (note: this means that the radius of convergence is $\frac{1}{2}$). Now show the interval of convergence is $\left[-\frac{1}{2}, \frac{1}{2}\right)$ by "checking the endpoints"

Problem 2

Use the root test to show that $\sum_{n=2}^{\infty}(\ln (x))^{n}$ converges for any $x \in\left(\frac{1}{e}, e\right)$. Now check the endpoints to show that the interval of convergence is $\left(\frac{1}{e}, e\right)$. What is the radius of convergence?

Problem 3

Give the interval and radius of convergence of the following series (make sure to check the endpoints of the interval you get from the ratio/root test).
a) $\sum_{n=1}^{\infty} \frac{x^{n}}{\sqrt{n^{2}+3}}$
b) $\sum_{n=1}^{\infty} \frac{\sqrt{n} x^{n}}{3^{n}}$
c) $\sum_{n=1}^{\infty} \frac{\left(x^{2}+1\right)^{n}}{3^{n}}$
d) $\sum_{n=1}^{\infty} \frac{(x)^{n}}{n(\ln (n))^{2}}$
e) $\sum_{n=1}^{\infty} \frac{(x-5)^{n}}{n+1}$

Problem 4

Find the Maclaurin series for $f(x)=2^{x}$.

Problem 5

Find the Taylor series for $f(x)=e^{x}$ at $a=2$.

