Math 242: HW 2

Due on Thursday, June 19 Summer~'14

 ${\bf John}\ "Curlee"\ {\bf Robertson}$

Problem 1

Use the Mean Value Theorem to prove that $\ln(xy) = \ln(x) + \ln(y)$ for any positive x, y > 0.

Problem 2

Use problem 1) and the fact proven in class, $\ln(x^n) = n \ln(x)$ for any x > 0, to prove that $\ln(\frac{x}{y}) = \ln(x) - \ln(y)$ for any x, y > 0.

Problem 3

Draw a graph of $f(t) = \frac{1}{t}$, make sure to mark the t-values 1 and 2, along with the corresponding values for f(1) and f(2). On the same graph draw a rectangle with vertices at (1,1/2), (2,1/2), (2,0), (1,0). What is the area of this rectangle? Why is the area of this rectangle less than ln(2)?

Problem 4

Use problem 3) to show that $\lim_{x\to\infty} \ln(x) = \infty$. Hint: Let M be ANY positive number, if you can find an x_M such that $\ln(x_M) > M$ then (since $\ln(x)$ is increasing) you have shown that $\lim_{x \to \infty} \ln(x) = \infty$.

Problem 5

Compute the following:

a)
$$\int \frac{1}{x+1} dx$$

$$b) \int_0^1 \frac{x}{x^2 + 1} \ dx$$

c)
$$\frac{d}{dx} \left(\ln(\sec(x)) \right)$$

d)
$$\int \frac{\sec^2(x)}{\tan(x)} \ dx$$