Math 242: HW 2

Due on Thursday, June 19
Summer '14

John "Curlee" Robertson

Problem 1

Use the Mean Value Theorem to prove that $\ln (x y)=\ln (x)+\ln (y)$ for any positive $x, y>0$.

Problem 2

Use problem 1) and the fact proven in class, $\ln \left(x^{n}\right)=n \ln (x)$ for any $x>0$, to prove that $\ln \left(\frac{x}{y}\right)=\ln (x)-\ln (y)$ for any $x, y>0$.

Problem 3

Draw a graph of $f(t)=\frac{1}{t}$, make sure to mark the t-values 1 and 2 , along with the corresponding values for $f(1)$ and $f(2)$. On the same graph draw a rectangle with vertices at $(1,1 / 2),(2,1 / 2),(2,0),(1,0)$. What is the area of this rectangle? Why is the area of this rectangle less than $\ln (2)$?

Problem 4

Use problem 3) to show that $\lim _{x \rightarrow \infty} \ln (x)=\infty$.
Hint: Let M be ANY positive number, if you can find an x_{M} such that $\ln \left(x_{M}\right)>M$ then (since $\ln (x)$ is increasing) you have shown that $\lim _{x \rightarrow \infty} \ln (x)=\infty$.

Problem 5

Compute the following:
a) $\int \frac{1}{x+1} d x$
b) $\int_{0}^{1} \frac{x}{x^{2}+1} d x$
c) $\frac{d}{d x}(\ln (\sec (x)))$
d) $\int \frac{\sec ^{2}(x)}{\tan (x)} d x$

