Problem 1

Find $\frac{d r}{d t}$ when $r(t)=\tan ^{-1}(t) i+t^{2} \sin (t) j+500 k$, and give the equation of the tangent line when $t=\pi$.

Problem 2

Graph the curve $x=\cos (t), y=\sin (t)$ and $z=t$ for $0 \leq t \leq 2 \pi$. Define $r(t)=\cos (t) i+\sin (t) j+t k$ and compute $r^{\prime}\left(\frac{\pi}{3}\right), r^{\prime}\left(\frac{\pi}{2}\right)$, and $r^{\prime}\left(\frac{3 \pi}{2}\right)$. Plot these tangent vectors on the curve you've drawn.

Problem 3

Suppose a particle's position vector at time t is given by the equation

$$
r(t)=2 t i+\ln \left(t+e^{2}\right) j+\frac{1}{t^{2}+t} k
$$

Find the particle's velocity and acceleration vectors. Determine the speed of the particle at $t=0$.

