Math 243
Name (Print):
Spring 2019
Practice Exam 1
Doomsday
Time Limit: Probably Not Enough

Problem	Points	Score
1	15	
2	30	
3	40	
4	15	
5	20	
6	20	
7	20	
Total:	160	

1. (15 points) Let $P=(1,2,3)$ and $Q=(0,-1,2)$.
a) Find the distance between P and Q.
b) Give the equation of a sphere, centered at P, that has the point Q on its surface.
c) Find the vector $\overrightarrow{P Q}$.
d) Find the angle between \vec{P} and \vec{Q}.
e) Parametrize (with parametric equations) the line segment which starts at P and ends at Q.
2. The following points define the vertices of a triangle:

$$
A=(0,0,1) \quad B=(1,3,-1) \quad C=(2,2,2)
$$

(a) (10 points) Find the area of the triangle.
(b) (10 points) Find an equation of the plane which contains the triangle.
(c) (10 points) Find the distance between the point $(3,2,1)$ and the plane from part b).
3. (a) (10 points) Let $u=i+j, v=i+j+k$. Find the projection of u onto $u+v$.
(b) (10 points) The vectors $u=i+2 j$ and $v=j+3 k$ lie in a plane that goes through the point $P=(1,0,1)$. Give the equation of this plane.
(c) (10 points) Give the equation of a line, perpendicular to the plane $2 x+3 y+z=6$, that goes through the point $(1,0,1)$.
(d) (10 points) Find the point in space the line from part c) intersects the plane from part b).
4. (15 points) Match the surface with its equation

$$
\begin{aligned}
1 & =x^{2}+y^{2}-z^{2} \\
y & =x^{2}+z^{2} \\
1 & =x^{2}+y^{2}+z^{2} \\
z & =y^{2}-x^{2} \\
0 & =x^{2}+y^{2}-z^{2} \\
x^{2} & =z^{2}+y^{2}+1
\end{aligned}
$$

5. (20 points) Find the length of the curve given by the parametric equations

$$
x=\cos (t) \quad \text { and } \quad y=t+\sin (t) \quad \text { for } 0 \leq t \leq \pi .
$$

Also, find the equation of the tangent line when $t=\frac{\pi}{2}$.
6. (20 points) Find the length of the curve

$$
x=\frac{y^{3}}{6}+\frac{1}{2 y}
$$

from $y=2$ to $y=3$.
7. (20 points) Consider the polar coordinate equations $r=2(1+\cos (\theta))$ and $r=2(1-\cos (\theta))$. a) Graph both of these curves. For both graphs, find and plot the equation of the tangent line when $\theta=\frac{\pi}{6}$.
b) Find the length of each curve.
c) Find the area between the curves in the first quadrant.

