Problem 1

Find the gradient field of the function $f(x, y, z)=x^{2} y^{2}+x y z$.

Problem 2

For each given vector field \mathbf{F}, find the work done by \mathbf{F} on the curves $C_{1}: \mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+t^{4} \mathbf{k}$ for $0 \leq t \leq 1$, and $C_{2}: \mathbf{r}(t)=t \mathbf{i}+t \mathbf{j}+t \mathbf{k}$ for $0 \leq t \leq 1$.

$$
\mathbf{F}=2 y \mathbf{i}+2 x \mathbf{j}+4 z \mathbf{k}
$$

$$
\mathbf{F}=\frac{1}{x^{2}+1} \mathbf{i}
$$

$$
\mathbf{F}=x y \mathbf{i}+y z \mathbf{j}+x z \mathbf{k}
$$

Problem 3

Suppose a velocity field is given by $\mathbf{F}=x \mathbf{i}+y \mathbf{j}$. Find the circulation and the flux around and across the ellipse $\mathbf{r}(t)=\cos (t) \mathbf{i}+4 \sin (t) \mathbf{j}$. Assume the curve is closed and only traversed once.

Problem 4

Suppose a velocity field is given by $\mathbf{F}=x \mathbf{i}-y \mathbf{j}$. Find the circulation and the flux around and across the ellipse $\mathbf{r}(t)=\cos (t) \mathbf{i}+4 \sin (t) \mathbf{j}$. Assume the curve is closed and only traversed once.

