Problem 1

Find the potential function for the field $\mathbf{F}=e^{x} \ln (y) \mathbf{i}+\left(\frac{e^{x}}{y}+\sin (z)\right) \mathbf{j}+y \cos (z) \mathbf{k}$.

Problem 2

Find the potential function for the field $\mathbf{F}=e^{y+2 z}(\mathbf{i}+x \mathbf{j}+2 x \mathbf{k})$.

Problem 3

Show that $F=y+z \mathbf{i}+x+e^{y}(1+y) \mathbf{j}+x \mathbf{k}$ is conservative, find it's potential function, f, and use it to compute $\int_{C} F \cdot d r$ for a curve, C, that starts at $(1,0,2)$ and ends at $(2,2,1)$.

Problem 4

Let C be any curve from $(0,2,1)$ to $\left(1, \frac{\pi}{2}, 2\right)$ (assume that the curve stays in a domain that satisfies the appropriate conditions, of course). Evaluate $\int_{C} 2 \cos (y) d x+\left(\frac{1}{y}-2 x \sin (y)\right) d y+\frac{1}{z} d z$ by showing that the associated field is conservative and finding a potential function.

