Problem 1

Parametrize the paraboloid $z=x^{2}+y^{2}$ for $z \leq 4$.

Problem 2

Parametrize the portion of the plane $x-y+2 z=2$ inside the cylinder $x^{2}+y^{2}=3$, then do the same for the cylinder $y^{2}+z^{2}=2$.

Problem 3

Parametrize the portion of the cylinder $y^{2}+(z-5)^{2}=25$ between the planes $x=0$ and $x=10$

Problem 4

Set up the integral giving the surface area of the surfaces in problems 1-3 as parametrized surfaces AND as implicit surfaces. Evaluate them both to make sure you've done this correctly but you don't need to include your computation.

Problem 5

Take the sphere or radius $\sqrt{2}$ centered at the origin and the cone $z=\sqrt{x^{2}+y^{2}}$. The intersection of these surfaces gives an upper part (the ice cream cone) and a lower part (don't know the name, I'm sure there is one...). Find the surface area of both using parametrizations or implicit surfaces.

