Problem 1

Let $\mathbf{F}=x^{2} \mathbf{i}+2 x \mathbf{j}+z^{2} \mathbf{k}$ and C be the ellipse $4 x^{2}+y^{2}=4$ in the $x y$-plane traversed counterclockwise when viewed from above. Use a surface integral in Stokes' Theorem to find the circulation of \mathbf{F} around C.

Problem 2

Let $\mathbf{F}=x^{2} y^{3} \mathbf{i}+\mathbf{j}+z \mathbf{k}$ and C the intersection of the cylinder $x^{2}+y^{2}=4$ and the hemisphere $x^{2}+y^{2}+z^{2}=16$, $z \geq 0$, counterclockwise when viewed from above. Use a surface integral in Stokes' Theorem to find the circulation of \mathbf{F} around C.

Problem 3

Let \mathbf{n} be the outer normal unit vector (away from the origin) of the parabolic shell

$$
S: \quad 4 x^{2}+y+z^{2}=4, \quad y \geq 0
$$

and let

$$
\mathbf{F}=\left(-z+\frac{1}{2+x}\right) \mathbf{i}+\left(\tan ^{-1}(y)\right) \mathbf{j}+\left(x+\frac{1}{4+z}\right) \mathbf{k}
$$

Find the value of

$$
\iint_{S}(\nabla \times \mathbf{F}) \bullet \mathbf{n} d \sigma
$$

Problem 4

Let $\mathbf{F}=2 z \mathbf{i}+3 x \mathbf{j}+5 y \mathbf{k}$, and S the surface parametrized by $\mathbf{r}(r, \theta)=r \cos \theta \mathbf{i}+r \sin \theta \mathbf{j}+\left(4-r^{2}\right) \mathbf{k}$ for $0 \leq \theta \leq 2 \pi, 0 \leq r \leq 2$. Calculate the flux of $\nabla \times \mathrm{F}$ across S in the direction of the outward normal \mathbf{n}. Hint: Use Stokes' Theorem.

