Problem 1

Let R be the triangle with vertices $\{(0,0),(1,1),(2,0)\}$. Compute $\iint_{R} 2 x y d A$.

Problem 2

Sketch the region of integration, reverse the order of integration and evaluate the integral:
$\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin y}{y} d y d x$

Problem 3

Let R be the unit circle. Set up the double integral over R two different ways (one $d x d y$ and another $d y d x$) for an arbitrary $f(x, y)$. (obviously, you don't need to solve these)

Problem 4

Compute: $\int_{0}^{8} \int_{\sqrt[3]{x}}^{2} \frac{d y d x}{y^{4}+1}$ (hint: draw the region first and reverse the order of integration).

