Problem 1

Show that the Jacobian of the transformation from spherical coordinates to rectangular coordinates ($x=$ $\rho \sin (\phi) \cos (\theta), y=\rho \sin (\phi) \sin (\theta), z=\rho \cos (\phi))$ is $\rho^{2} \sin (\phi)$.

Problem 2

Find the volume of the elipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

for constants $a, b, c>0$ by making the transformation $x=a u, y=b v, z=c w$ where u, v, w are the new variables. (Hint/Shortcut: If you encounter an integral giving the volume of a sphere, you may use the formula $V=\frac{4}{3} \pi r^{3}$.)

