INSTRUCTIONS: Write legibly. Indicate your answer clearly. Show all work; explain your answers. Answers with work not shown might be worth zero points. No calculators, cell phones, or cheating.

Problem	Worth	Score
1	10	
2	15	
3	15	
4	20	
5	20	
6	20	
Total	100	

(10) 1. Evaluate the following integral over $0 \leq x \leq \ln 2$ and $0 \leq y \leq \ln 2$:

$$
\iint e^{x-y} d A=
$$

(15) 2. Find the volume of the solid that is bounded above by the cylinder $z=x^{2}$ and below by the region enclosed by the parabola $y=2-x^{2}$ and the line $y=x$ in the $x y$-plane.
(15) 3. Find the average value of the function $f(x, y)=\sin (x-y)$ over the rectangle $0 \leq x \leq \pi$ and $0 \leq y \leq \pi / 2$.
eeject
(20) 4. The region that lies inside the cardoid $r=1+\cos \theta$ and outside the circle $r=1$ is the base of a solid right cylinder. The top of the cyclinder lies in the plane $z=x$.
(a) Express the volume as an integral
(b) Calculate the volume of the cyclinder. (Skip the calculation if you don't have enough time.)
(20) 5. Find the center of mass of a solid of constant density bounded below by the paraboloid $z=x^{2}+y^{2}$ and above by the plane $z=4$.
(20) 6. Find the average value of the function $f(\rho, \phi, \theta)=\rho$ over the solid ball $\rho \leq 1$.

Think of $f(\rho, \phi, \theta)=\rho$ as density function. Express the moment of inertia about any central axis as an iterated integral.

