251 - Worksheet 2

Name: Curlee's Solutions

Draw a graph of the following function:

$$f(x) = \begin{cases} 2 & x < 0 \\ x + 2 & 0 < x < 1 \\ \sin(\pi x) & 1 \le x \le 3 \end{cases}$$

Now, use your graph to determine the following (if they exist):

$$f(0) = undefined$$

$$\lim f(x) = \mathfrak{J}$$

$$\lim_{x \to 0} f(x) = 2$$

$$\lim_{x \to 1} f(x) = DNE$$

$$\lim_{x \to .5} f(x) = 2.5$$

$$\lim_{x \to 2} f(x) = \bigcirc$$

$$\lim_{x \to 2} f(x) = \bigcirc$$

Draw a graph of a function, call it g(x), with the following properties:

$$\lim_{x \to 1} g(x) = 0$$

$$\lim_{x \to 2} g(x) = DNE,$$

$$g(x)$$
 is not defined at $x = 1$, $g(2) = 1$, $g(0) = 0$, $g(3) = 0$.

Determine the following:

$$\lim_{x \to 2} \frac{x^2 + 6x - 7}{x^2 - 1} = \frac{4 + 12 - 7}{4 - 1} = 3$$

$$\lim_{x \to 1} \frac{x^2 + 6x - 7}{x^2 - 1} = \lim_{x \to 1} \frac{(x + 7)(x - 1)}{(x + 1)(x - 1)} = \lim_{x \to 1} \frac{x + 7}{x + 1} = \frac{1 + 7}{1 + 1} = 4$$

$$\lim_{x \to -7} \frac{x^2 + 6x - 7}{x^2 - 1} = \lim_{x \to -7} \frac{\chi + 7}{x + 1} = \frac{0}{-6} = 0$$

$$\lim_{x \to -1} \frac{x^2 + 6x - 7}{x^2 - 1} = \underbrace{DME}_{\text{denom}} \text{ because } \underbrace{\frac{\text{num.} \neq 0}{\text{denom}}}_{\text{enom}}.$$

Stay tuned for complete solution!

$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{(x - 1)}$$

$$= \lim_{x \to 1} \frac{x^3 - 1}{(x - 1)} = \lim_{x \to 1} \frac{x^3 - 1}{(x - 1)}$$