Math 307
Spring 2019
Exam 1 - Practice
Due: 2/20/19
Time Limit: 50 Minutes

Problem	Points	Score
1	20	
2	10	
3	10	
4	10	
5	40	
6	25	
7	20	
8	40	
9	20	
10	20	
11	20	
12	20	
13	20	
14	20	
15	10	
16	20	
Total:	325	

1. (20 points) Which of the following matrices are in reduced row-echelon form?

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 & 8 \\
0 & 1 & 0 & 5 \\
0 & 0 & 1 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right],} \\
& {\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] .}
\end{aligned}
$$

2. (10 points) Prove that $B^{T} B$ is always a symmetric matrix.
3. (10 points) Let $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 0 \\ 0 & 1 \\ 2 & 3\end{array}\right]$. Find $(A B)^{T}$.
4. (10 points) Let $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1\end{array}\right]$, find A^{-1}.
5. (a) (5 points) $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]=$
(b) (5 points) $\left[\begin{array}{cc}2 & 4 \\ 0 & -1\end{array}\right]\left[\begin{array}{ll}2 & 0 \\ 1 & 1\end{array}\right]=$
(c) (5 points) If A is a 4×3 and B is a 3×4 matrix, what are the dimensions of $A B$ and $B A$?
(d) (5 points) True of false: $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
(e) (5 points) True of false: $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$
(f) (5 points) Prove or provide a counter example to the following statement: If A is invertible and B is invertible then $A+B$ is invertible.
(g) (5 points) Prove or provide a counter example to the following statement: If A is invertible and B is invertible then $A B$ is invertible.
(h) (5 points) For the vectors v_{1}, \ldots, v_{n}, what is $\operatorname{span}\left(v_{1}, \ldots, v_{n}\right)$?
6. (a) (15 points) Prove that A and B are row equivalent if and only if there is an invertible matrix C such that $C A=B$.
(b) (10 points) Compute

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
1 & 0 & 2 & 1 \\
1 & 1 & 0 & 1 \\
1 & 3 & 4 & 1 \\
-1 & -3 & -4 & -1
\end{array}\right]\right)
$$

7. (a) (10 points) Compute

$$
\operatorname{det}\left(\left[\begin{array}{cccc}
-1 & 0 & 0 & 2 \\
1 & 1 & 2 & 1 \\
1 & 0 & 0 & 1 \\
2 & 0 & 4 & 0
\end{array}\right]\right)
$$

(b) (10 points) Suppose A is a 5×5 matrix such that $\operatorname{det}(A)=2$. Let $E=\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$. What is $\operatorname{det}(E A)=$?
8. (a) (10 points) Show that $x^{2}+1, x-1$ are linearly independent.
(b) (10 points) Show that the vectors $x^{2}+1, x-1$ do not $\operatorname{span} P_{2}$.
(c) (10 points) Show that $x^{2}+x+1, x^{2}-1, x+5,4$ are linearly dependent.
(d) (10 points) Suppose that we have $v_{1}, \ldots, v_{n} \in \mathbb{R}^{n}$. Let A be the matrix whose i-th column is the vector v_{i} (recall that the notation for this is $A=\left[v_{1} \ldots v_{n}\right]$). If $\operatorname{det}(A) \neq 0$, explain why v_{1}, \ldots, v_{n} form a basis for \mathbb{R}^{n}.
9. (20 points) Suppose that

$$
A=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Determine if A is invertible by computing $\operatorname{det}(A)$. If A is invertible, express A^{-1} as a product of elementary matrices.
10. (20 points) State 5 properties that are all equivalent to a matrix being invertible.
11. (20 points) Let

$$
A=\left[\begin{array}{ccccccc}
1 & 0 & -1 & 0 & 1 & 0 & 3 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 4 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 1 & 3
\end{array}\right]
$$

Find a basis for the null space and row space of A, the dimension of the null space of A, and the rank of A. Explain why the standard basis for \mathbb{R}^{4} is a basis for $C S(A)$.
12. (20 points) Prove that if A is an $n \times n$ matrix and $\operatorname{Rank}(A)=n$, then A is invertible.
13. (20 points) For a matrix A, prove that the set of vectors $\left\{X \in \mathbb{R}^{n}: A X=0\right\}$ form a vector space.
14. (20 points) Prove that if A and B are row equivalent, then $N S(A)=N S(B)$.

EXTRA CREDIT:

(10 points) Define non-standard operations on \mathbb{R} that satisfy all the properties of a vector space EXCEPT property 7.
(20 points) Define non-standard operations on \mathbb{R} that satisfy all the properties of a vector space EXCEPT property 8.

