Name (Print):

Math 307 Spring 2019 Exam 1 - Practice Due: 2/20/19 Time Limit: 50 Minutes

Problem	Points	Score
1	20	
2	10	
3	10	
4	10	
5	40	
6	25	
7	20	
8	40	
9	20	
10	20	
11	20	
12	20	
13	20	
14	20	
15	10	
16	20	
Total:	325	

1. (20 points) Which of the following matrices are in reduced row-echelon form?

$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$\begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}$	$egin{array}{c} 0 \ 1 \ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \end{array}$	$\begin{bmatrix} 8\\5\\1 \end{bmatrix},$	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	0 0 0	0 0 1	$\begin{bmatrix} 1\\0\\0\end{bmatrix},$	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	0 0 0	0 1 0	$\begin{bmatrix} 2\\0\\0\end{bmatrix},$	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	2 0 0 0 0	3 0 0 0 0	4 0 0 0 0	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0 \end{array}$,	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	$egin{array}{c} 0 \ 1 \ 0 \end{array}$	$egin{array}{c} 0 \ 1 \ 0 \end{array}$	$\begin{bmatrix} 0\\0\\1\end{bmatrix},$
$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	$egin{array}{c} 0 \ 1 \ 0 \end{array}$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}.$																					

2. (10 points) Prove that $B^T B$ is always a symmetric matrix.

3. (10 points) Let
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 2 & 3 \end{bmatrix}$. Find $(AB)^T$.

4. (10 points) Let
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
, find A^{-1} .

5. (a) (5 points)
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} =$$

(b) (5 points)
$$\begin{bmatrix} 2 & 4 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} =$$

- (c) (5 points) If A is a 4×3 and B is a 3×4 matrix, what are the dimensions of AB and BA?
- (d) (5 points) True of false: det(AB) = det(A) det(B)
- (e) (5 points) True of false: det(A + B) = det(A) + det(B)
- (f) (5 points) Prove or provide a counter example to the following statement: If A is invertible and B is invertible then A + B is invertible.
- (g) (5 points) Prove or provide a counter example to the following statement: If A is invertible and B is invertible then AB is invertible.
- (h) (5 points) For the vectors $v_1, ..., v_n$, what is $\text{span}(v_1, ..., v_n)$?

6. (a) (15 points) Prove that A and B are row equivalent if and only if there is an invertible matrix C such that CA = B.

(b) (10 points) Compute

	,	[1	0	2	1	
dat	(1	1	0	1	
det		1	3	4	1	
	`	-1	$\begin{array}{c} 0 \\ 1 \\ 3 \\ -3 \end{array}$	-4	-1	/

7. (a) (10 points) Compute

$$\det\left(\begin{bmatrix}-1 & 0 & 0 & 2\\1 & 1 & 2 & 1\\1 & 0 & 0 & 1\\2 & 0 & 4 & 0\end{bmatrix}\right)$$

(b) (10 points) Suppose A is a 5×5 matrix such that $\det(A) = 2$. Let $E = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$. What is $\det(EA) =$? 8. (a) (10 points) Show that $x^2 + 1, x - 1$ are linearly independent.

(b) (10 points) Show that the vectors $x^2 + 1, x - 1$ do not span P_2 .

(c) (10 points) Show that $x^2 + x + 1$, $x^2 - 1$, x + 5, 4 are linearly **dependent**.

(d) (10 points) Suppose that we have $v_1, ..., v_n \in \mathbb{R}^n$. Let A be the matrix whose *i*-th column is the vector v_i (recall that the notation for this is $A = [v_1...v_n]$). If det $(A) \neq 0$, explain why $v_1, ..., v_n$ form a basis for \mathbb{R}^n .

9. (20 points) Suppose that

	[2	0	0	[1	0	0	1	2	0	[0	1	0
A =	0	1	0	0	1	1	0	1	0	1	0	0
A =	0	0	1	0	0	1	0	0	1	0	0	1

Determine if A is invertible by computing det(A). If A is invertible, express A^{-1} as a product of elementary matrices.

10. (20 points) State 5 properties that are all equivalent to a matrix being invertible.

11. (20 points) Let

	[1	0	-1	0	1	0	3]
1 _	0	1	0	0	1	0	1
$A \equiv$	0	0	0	1	4	0	2
A =	0	0	0	0	0	1	3

Find a basis for the null space and row space of A, the dimension of the null space of A, and the rank of A. Explain why the standard basis for \mathbb{R}^4 is a basis for CS(A).

12. (20 points) Prove that if A is an $n \times n$ matrix and $\operatorname{Rank}(A) = n$, then A is invertible.

13. (20 points) For a matrix A, prove that the set of vectors $\{X \in \mathbb{R}^n : AX = 0\}$ form a vector space.

14. (20 points) Prove that if A and B are row equivalent, then NS(A) = NS(B).

EXTRA CREDIT:

(10 points) Define non-standard operations on \mathbb{R} that satisfy all the properties of a vector space EXCEPT property 7.

(20 points) Define non-standard operations on \mathbb{R} that satisfy all the properties of a vector space EXCEPT property 8.