Problem 1

Are the vectors $\left[\begin{array}{c}1 \\ 2 \\ -2\end{array}\right]$ and $\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right]$ linearly dependent or linearly independent?

Problem 2

Are the vectors $\left[\begin{array}{c}1 \\ 2 \\ -2\end{array}\right],\left[\begin{array}{c}0 \\ 2 \\ -2\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $\left[\begin{array}{c}-2 \\ 3 \\ 1\end{array}\right]$ linearly dependent or linearly independent?

Problem 3

Are the vectors $\left[\begin{array}{c}2 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{c}0 \\ 2 \\ -2\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ linearly dependent or linearly independent?

Problem 4

Are the vectors $\left[\begin{array}{c}2 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{c}0 \\ 2 \\ -2\end{array}\right]$ and $\left[\begin{array}{c}2 \\ 3 \\ -4\end{array}\right]$ linearly dependent or linearly independent?

Problem 5

Are the vectors $v_{1}=x^{2}+1, v_{2}=x+2$ and $v_{3}=x^{2}+2 x+5$ linearly dependent or linearly independent?

Problem 6

Are the vectors $v_{1}=x^{2}+1, v_{2}=x+2$ and $v_{3}=x^{2}+2 x$ linearly dependent or linearly independent?

Problem 7

Determine if $\mathcal{B}=\left\{\left[\begin{array}{c}-1 \\ 2\end{array}\right],\left[\begin{array}{c}3 \\ -1\end{array}\right]\right\}$ is a basis for \mathbb{R}^{2}.

Problem 8

Determine if $\mathcal{W}=\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ -1\end{array}\right],\left[\begin{array}{c}-1 \\ 2\end{array}\right]\right\}$ is a basis for \mathbb{R}^{2}.

