Problem 1

Determine if $\mathcal{B}=\left\{\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{c}3 \\ -1 \\ 1\end{array}\right]\right\}$ is a basis for \mathbb{R}^{3}.

Problem 2

Verify that $\beta=\left\{\left[\begin{array}{l}0 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 1\end{array}\right]\right\}$ is a basis for \mathbb{R}^{2}. Then, for $v=\left[\begin{array}{l}6 \\ 8\end{array}\right]$, find $[v]_{\beta}$.

Problem 3

Verify that $\alpha=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$ is a basis for \mathbb{R}^{3}. Then, for $v=\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]$, find $[v]_{\alpha}$.

