Problem 1

Determine if
$$\mathcal{B} = \left\{ \begin{bmatrix} -1\\2\\0 \end{bmatrix}, \begin{bmatrix} 3\\-1\\1 \end{bmatrix} \right\}$$
 is a basis for \mathbb{R}^3 .

Problem 2 Verify that $\beta = \left\{ \begin{bmatrix} 0\\2 \end{bmatrix}, \begin{bmatrix} 3\\1 \end{bmatrix} \right\}$ is a basis for \mathbb{R}^2 . Then, for $v = \begin{bmatrix} 6\\8 \end{bmatrix}$, find $[v]_\beta$.

Problem 3

Verify that
$$\alpha = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$$
 is a basis for \mathbb{R}^3 . Then, for $v = \begin{bmatrix} 3\\4\\5 \end{bmatrix}$, find $[v]_{\alpha}$.