Problem 1

Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
2 x+y \\
x-4 y
\end{array}\right]
$$

1. Determine if T is a linear transformation.
2. Find a matrix A such that $T(X)=A X$ for all $X \in \mathbb{R}^{2}$.

Problem 2

Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by

$$
T\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x-y+z \\
x+z \\
y-3 z
\end{array}\right]
$$

1. Determine if T is a linear transformation.
2. Find a matrix A such that $T(X)=A X$ for all $X \in \mathbb{R}^{3}$.

Problem 3

Define $T: P_{2} \rightarrow P_{1}$ by

$$
T\left(a x^{2}+b x+c\right)=2 a x+b
$$

Determine if T is a linear transformation, then find $\operatorname{ker}(T)$ and $\operatorname{range}(T)$.

Problem 4

Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by

$$
T\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x+y+5 z \\
x+2 y+8 z
\end{array}\right]
$$

1. Determine if T is a linear transformation.
2. Find a matrix A such that $T(X)=A X$ for all $X \in \mathbb{R}^{3}$.
3. Find a basis for $\operatorname{ker}(T)$.
4. Find a basis for range (T).
