## Problem 1

Suppose that $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear transformation and

$$
T\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], \quad T\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right], \quad T\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
3
\end{array}\right] .
$$

1. Determine $T\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. (Note: you can do part 2 first and deduce this from it, if you want.)
2. Determine $T\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
(Problem 1 Continued)
3. Find a matrix $A$ such that $T(X)=A X$ for all $X \in \mathbb{R}^{3}$.
4. Find a basis for $\operatorname{ker}(T)$.
5. Find a basis for range $(T)$.
