Problem 1

Which of the following matrices are in reduced row-echelon form?

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 & 8 \\
0 & 1 & 0 & 5 \\
0 & 0 & 1 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 5 \\
0 & 0 & 1 & 1
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right],\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Problem 2

Determine a condition on a, b and c so that the following system has solutions:

$$
\begin{aligned}
2 x+y+z & =a \\
x-2 y+z & =b \\
3 x-y+2 z & =c
\end{aligned}
$$

Problem 3

Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 4\end{array}\right], B=\left[\begin{array}{ll}2 & 1 \\ 3 & 1\end{array}\right]$ and $C=\left[\begin{array}{l}3 \\ 5\end{array}\right]$. If possible, compute $A+B, 3 A-2 B, A B, B A, A C$ and $C A$.

