Problem 1

Determine if $A=\left[\begin{array}{cc}1 & 2 \\ -2 & -3\end{array}\right]$ is diagonalizable. If it is, find a diagonal matrix D, and an invertible matrix P
such that $D=P^{-1} A P$.

Problem 2

Determine if $A=\left[\begin{array}{cc}0 & -1 \\ 4 & 5\end{array}\right]$ is diagonalizable. If it is, find a diagonal matrix D, and an invertible matrix P such that $D=P^{-1} A P$.

Problem 3

Determine if $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 0 & 3 & -2 \\ 0 & 0 & 2\end{array}\right]$ is diagonalizable. If it is, find a diagonal matrix D, and an invertible matrix P such that $D=P^{-1} A P$.

Problem 4

Determine if $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$ is diagonalizable. If it is, find a diagonal matrix D, and an invertible matrix P such that $D=P^{-1} A P$.

Problem 5

Determine if $A=\left[\begin{array}{cc}1 & 2 \\ -1 & -1\end{array}\right]$ is diagonalizable. If it is, find a diagonal matrix D, and an invertible matrix P such that $D=P^{-1} A P$.

