Problem 1

Suppose that A is a matrix whose characteristic polynomial is $(\lambda-2)^{2}(\lambda+1)^{2}$, find all possible Jordan Normal Forms of A (up to permutation of the Jordan blocks).

Problem 2

Suppose that A is a matrix whose characteristic polynomial is $(\lambda-4)^{4}(\lambda-1)^{2}$, find all possible Jordan Normal Forms of A (up to permutation of the Jordan blocks).

Problem 3

Suppose that A is a matrix whose characteristic polynomial is $(\lambda-2)^{2}(\lambda+1)^{2}$, and $\operatorname{dim}\left(E_{2}\right)=1$ and $\operatorname{dim}\left(E_{-1}\right)=2$. Find the Jordan Normal Form of A.

Problem 4

Suppose that A is a matrix whose characteristic polynomial is $(\lambda-3)^{2}(\lambda-5)$, and A is not diagonalizable. Find the Jordan Normal Form of A.

Problem 5

Suppose that A is an $n \times n$ square matrix with only one eigenvalue, r. Prove that if $A=r I$, then A is diagonalizable.

Problem 6

Suppose that A is an $n \times n$ square matrix with only one eigenvalue, r. Prove that if A is diagonalizable, then $A=r I$. Hint: (here is one way to prove this fact, there are many other ways) If A is diagonalizable, then $\operatorname{dim}\left(E_{r}\right)=n$. Notice that E_{r} consists of vectors in \mathbb{R}^{n} and therefore each standard basis vector in \mathbb{R}^{n} is an eigenvector with eigenvalue r. Now notice that $A=A I=A\left[e_{1} e_{2} \cdots e_{n}\right]$ and use block multiplication to conclude the result.

