Problem 1

Suppose that A is a matrix whose characteristic polynomial is $(\lambda - 2)^2(\lambda + 1)^2$, find all possible Jordan Normal Forms of A (up to permutation of the Jordan blocks).

 ${\bf Score:}$

Problem 2

Suppose that A is a matrix whose characteristic polynomial is $(\lambda - 4)^4(\lambda - 1)^2$, find all possible Jordan Normal Forms of A (up to permutation of the Jordan blocks).

Suppose that A is a matrix whose characteristic polynomial is $(\lambda - 2)^2(\lambda + 1)^2$, and dim $(E_2) = 1$ and dim $(E_{-1}) = 2$. Find the Jordan Normal Form of A.

/10

Score:

Problem 4

Suppose that A is a matrix whose characteristic polynomial is $(\lambda - 3)^2(\lambda - 5)$, and A is not diagonalizable. Find the Jordan Normal Form of A.

Problem 5

Suppose that A is an $n \times n$ square matrix with only one eigenvalue, r. Prove that if A = rI, then A is diagonalizable.

Problem 6

Suppose that A is an $n \times n$ square matrix with only one eigenvalue, r. Prove that if A is diagonalizable, then A = rI. Hint: (here is one way to prove this fact, there are many other ways) If A is diagonalizable, then $\dim(E_r) = n$. Notice that E_r consists of vectors in \mathbb{R}^n and therefore each standard basis vector in \mathbb{R}^n is an eigenvector with eigenvalue r. Now notice that $A = AI = A[e_1e_2\cdots e_n]$ and use block multiplication to conclude the result.