Problem 1

Suppose that we know that $A^{-1}=\left[\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right]$. Solve the matrix equation $A X=B$ to find x and y where $X=\left[\begin{array}{l}x \\ y\end{array}\right]$, and $B=\left[\begin{array}{l}1 \\ 3\end{array}\right]$.

Problem 2

Suppose we are given $A^{-1}=\left[\begin{array}{lll}1 & 4 & 0 \\ 2 & 3 & 0 \\ 4 & 2 & 2\end{array}\right]$. Solve the matrix equation $A X=B$ to find x, y and z where $X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$, and $B=\left[\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right]$.

Problem 3

Show that a square matrix with a zero row is not invertible.

Problem 4

Let $A=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Show that A is invertible if and only if each $a_{i} \neq 0$.

Problem 5

Let $A=\left[\begin{array}{lll}1 & 2 & -3 \\ 2 & 0 & -1\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & 2 \\ 1 & -1 \\ 0 & 2\end{array}\right]$. Find $(A B)^{T}$.

