Problem 1

On the set of vectors $\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right] \in \mathbb{R}^{2}$, define an addition by

$$
\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] \oplus\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1}+x_{2}+x_{1} x_{2} \\
y_{1}+y_{2}+y_{1} y_{2}
\end{array}\right]
$$

and a scalar multiplication by

$$
k \odot\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
k x \\
k y
\end{array}\right] .
$$

Determine if this is a vector space.

Problem 2

On the set of vectors $\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right] \in \mathbb{R}^{2}$, with x_{1} in \mathbb{R}, and y_{1} in \mathbb{R}^{+}(meaning $y_{1}>0$) define an addition by

$$
\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] \oplus\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+x_{2} \\
y_{1} y_{2}
\end{array}\right]
$$

and a scalar multiplication by

$$
k \odot\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
k x \\
y^{k}
\end{array}\right] .
$$

Determine if this is a vector space. If it is, make sure to explicitly state what the 0 vector is.

