$\begin{array}{c} \textbf{Math 307} \\ \textbf{Spring 2019} \end{array}$

Exam 1 - Practice

Due: 2/19/19

Time Limit: 75 Minutes

Name	(Print):	

Problem	Points	Score
1	20	
2	10	
3	10	
4	10	
5	40	
6	25	
7	20	
8	40	
9	20	
10	20	
11	20	
12	20	
13	20	
14	20	
Total:	295	

1. (20 points) Which of the following matrices are in reduced row-echelon form?

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

2. (10 points) Prove that B^TB is always a symmetric matrix.

3. (10 points) Let
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 2 & 3 \end{bmatrix}$. Find $(AB)^T$.

4. (10 points) Let
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
, find A^{-1} .

5. (a) (5 points)
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} =$$

(b) (5 points)
$$\begin{bmatrix} 2 & 4 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} =$$

- (c) (5 points) If A is a 4×3 and B is a 3×4 matrix, what are the dimensions of AB and BA?
- (d) (5 points) True of false: det(AB) = det(A) det(B)
- (e) (5 points) True of false: det(A + B) = det(A) + det(B)
- (f) (5 points) Prove or provide a counter example to the following statement: If A is invertible and B is invertible then A + B is invertible.
- (g) (5 points) Prove or provide a counter example to the following statement: If A is invertible and B is invertible then AB is invertible.
- (h) (5 points) For the vectors $v_1, ..., v_n$, what is span $(v_1, ..., v_n)$?

6. (a) (15 points) Prove that A and B are row equivalent if and only if there is an invertible matrix C such that CA = B.

(b) (10 points) Compute

$$\det\left(\begin{bmatrix}1 & 0 & 2 & 1\\1 & 1 & 0 & 1\\1 & 3 & 4 & 1\\-1 & -3 & -4 & -1\end{bmatrix}\right)$$

7. (a) (10 points) Compute

$$\det\left(\begin{bmatrix} -1 & 0 & 0 & 2\\ 1 & 1 & 2 & 1\\ 1 & 0 & 0 & 1\\ 2 & 0 & 4 & 0 \end{bmatrix}\right)$$

(b) (10 points) Suppose
$$A$$
 is a 5×5 matrix such that $\det(A) = 2$. Let $E = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$.

What is det(EA) = ?

8. (a) (10 points) Show that $x^2 + 1, x - 1$ are linearly independent.

(b) (10 points) Show that the vectors $x^2 + 1, x - 1$ do not span P_2 .

(c) (10 points) Show that $x^2 + x + 1$, $x^2 - 1$, x + 5, 4 are linearly **dependent**.

(d) (10 points) Suppose that we have $v_1, ..., v_n \in \mathbb{R}^n$. Let A be the matrix whose i-th column is the vector v_i (recall that the notation for this is $A = [v_1...v_n]$). If $\det(A) \neq 0$, explain why $v_1, ..., v_n$ form a basis for \mathbb{R}^n .

9. (20 points) Suppose that

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Determine if A is invertible by computing det(A). If A is invertible, express A^{-1} as a product of elementary matrices.

10. (20 points) State 5 properties that are all equivalent to a matrix being invertible.

11. (20 points) Let

$$A = \begin{bmatrix} 1 & 0 & -1 & 0 & 1 & 0 & 3 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 4 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 1 & 3 \end{bmatrix}$$

Find a basis for the null space and row space of A, the dimension of the null space of A, and the rank of A. Explain why the standard basis for \mathbb{R}^4 is a basis for CS(A).

EXCEPT property 8.

Due: 2/19/19

(20 points) Define non-standard operations on \mathbb{R} that satisfy all the properties of a vector space