Math 307
Spring 2019
Final - Practice
Time Limit: 120 Minutes

Problem	Points	Score
1	80	
2	10	
3	10	
4	10	
5	15	
6	20	
7	50	
8	15	
9	20	
10	10	
11	10	
12	10	
13	10	
14	10	
15	20	
Total:	300	

1. (60 points) Answer true or false to the following statements:

If V is a vector space of dimension n, then V is an $n \times n$ matrix.

If 0 is an eigenvalue of A, then A is not invertible.

If V is a vector space of dimension n, then any set of n vectors must be linearly independent.

If $\operatorname{det}(A) \neq 0$ then A is invertible.

If A is an $n \times n$ invertible matrix, then the rows of A are linerarly independent
$\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$
$\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$

If T is a linear transformation, then so is $T+T^{2}$.

If A is invertible and B is invertible then $A+B$ is invertible.

If v_{1} and v_{2} are linearly independent then there exists nonzero constants, c_{1} and c_{2}, such that $c_{1} v_{1}+c_{2} v_{2}=0$.

If λ is an eigenvalue of A then $\operatorname{det}(\lambda I-A)=0$.

If V is a vector space of dimension n, then any collection of n vectors forms a basis for V.

If A is an $n \times n$ matrix with n distinct eigenvalues, then A is diagonalizable.

If A is an $n \times n$ matrix with n distinct eigenvalues, then A is invertible.

If A is an $n \times n$ matrix that is invertible, then A is diagonalizable.

If A is an $n \times n$ matrix that is diagonalizable, then A is invertible.
(a) (10 points) Give a basis for the null space $N S(A)$ and the column space $C S(A)$ of the following matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & -1 & 3 \\
-1 & 2 & -2
\end{array}\right]
$$

(b) (10 points) Solve the following linear system

$$
\begin{aligned}
x+y+z & =0 \\
2 x-y+3 z & =1 \\
-x+2 y-2 z & =-1
\end{aligned}
$$

2. (10 points) Consider the matrix

$$
\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 3
\end{array}\right]
$$

Determine $\operatorname{dim}\left(E_{1}\right), \operatorname{dim}\left(E_{2}\right)$ and $\operatorname{dim}\left(E_{3}\right)$.
3. (10 points) Determine which of the following matrices are similar to the matrix $\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 3\end{array}\right]$. $\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 3\end{array}\right],\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 3\end{array}\right],\left[\begin{array}{lllll}3 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right],\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 3\end{array}\right],\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 3\end{array}\right]$.
4. (10 points) Suppose that the characteristic polynomial of A is $(\lambda-1)^{4}(\lambda-2)^{3}$. If $\operatorname{dim}\left(E_{1}\right)=2$ and $\operatorname{dim}\left(E_{2}\right)=1$, give the possible (up to permutation) Jordan Normal Forms of A.
5. Consider the homogeneous first order linear differential system

$$
\begin{aligned}
& x^{\prime}=x-y+z \\
& y^{\prime}=2 y+z \\
& z^{\prime}=2 z
\end{aligned}
$$

where x, y, z are all functions of the variable t.
(a) (5 points) Write the system in the matrix form $Y^{\prime}=A Y+G$.
(b) (5 points) Is the matrix A diagonalizable? Explain your answer.
(c) (5 points) Find the general solution to the homogeneous system $Y^{\prime}=A Y$.
6. (20 points) Solve the initial value problem

$$
Y^{\prime}=\left[\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right] Y+\left[\begin{array}{c}
e^{x} \\
0
\end{array}\right], \quad Y(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

7. Let's consider the non-homogeneous first order linear differential system

$$
\begin{aligned}
& x^{\prime}=-4 x-3 y+3 z \\
& y^{\prime}=3 x+2 y-3 z+e^{t} \\
& z^{\prime}=-3 x-3 y+2 z
\end{aligned}
$$

where x, y, z are all functions of the variable t.
(a) (5 points) Write the system in the matrix form $Y^{\prime}=A Y+G$.
(b) (15 points) Find a diagonal matrix D and an invertible matrix P such that $D=P^{-1} A P$.
(c) (5 points) Find the general solution to the homogeneous system $Z^{\prime}=D Z$.
(d) (5 points) Use the result of the previous question to find the general solution Y_{H} to the homogeneous system $Y^{\prime}=A Y$, and find a fundamental set, Y_{1}, Y_{2}, Y_{3}, of solutions to this system.
(e) (15 points) Using the matrix $M=\left[\begin{array}{lll}Y_{1} & Y_{2} & Y_{3}\end{array}\right]$, compute a particular solution Y_{p} to the non-homogeneous system $Y^{\prime}=A Y+G$.
(f) (5 points) Use the result of the previous question to find the general solution to the nonhomogeneous system $Y^{\prime}=A Y+G$.
8. Consider the following system:

$$
\begin{aligned}
& y_{1}^{\prime \prime}=y_{1}^{\prime}+y_{2}^{\prime}+e^{x} \\
& y_{2}^{\prime \prime}=y_{1}+y_{2}+\sin (x)
\end{aligned}
$$

where y_{1} and y_{2} are functions of x.
(a) (10 points) Write this system as a system of first order liner differential equations in the form $Y^{\prime}=A Y+G$.
(b) (5 points) Give a condition on A so that we can solve this system with the techniques learned in this class.
9. (a) (5 points) Write the following differential equation as a system of first order linear equations:

$$
y^{\prime \prime}+4 y^{\prime}+3 y=0
$$

(b) (10 points) Solve the system from part a).
(c) (5 points) Verify your solution by computing the kernel of the appropriate differential operator.
10. (10 points) Let be A an $n \times n$ matrix, prove that $\operatorname{Rank}(A)=n$ if and only if A is invertible.
11. (10 points) Prove that if A and B are row equivalent, then $N S(A)=N S(B)$.
12. (10 points) Let A be an $n \times n$ matrix. Prove that a number λ is an eigenvalue of A if and only if

$$
\operatorname{det}(\lambda I-A)=0 .
$$

13. (10 points) Prove that if A is similar to B, and A is diagonalizable, then B is also diagonalizable.
14. (10 points) Prove that a matrix A is invertible if and only if 0 is not an eigenvalue of A.
15. (20 points) State 5 properties that are all equivalent to a matrix being invertible.
