Name (Print):

Math 307 Spring 2019 Final - Practice

Time Limit: 120 Minutes

Problem	Points	Score
1	80	
2	10	
3	10	
4	10	
5	15	
6	20	
7	50	
8	15	
9	20	
10	10	
11	10	
12	10	
13	10	
14	10	
15	20	
Total:	300	

1. (60 points) Answer true or false to the following statements:

If V is a vector space of dimension n, then V is an $n \times n$ matrix.

If 0 is an eigenvalue of A, then A is not invertible.

If V is a vector space of dimension n, then any set of n vectors must be linearly independent.

If $det(A) \neq 0$ then A is invertible.

If A is an $n \times n$ invertible matrix, then the rows of A are linearly independent

 $\det(A+B) = \det(A) + \det(B)$

 $\det(AB) = \det(A)\det(B)$

If T is a linear transformation, then so is $T + T^2$.

If A is invertible and B is invertible then A + B is invertible.

If v_1 and v_2 are linearly independent then there exists nonzero constants, c_1 and c_2 , such that $c_1v_1 + c_2v_2 = 0$.

If λ is an eigenvalue of A then $det(\lambda I - A) = 0$.

If V is a vector space of dimension n, then any collection of n vectors forms a basis for V.

If A is an $n \times n$ matrix with n distinct eigenvalues, then A is diagonalizable.

If A is an $n \times n$ matrix with n distinct eigenvalues, then A is invertible.

If A is an $n \times n$ matrix that is invertible, then A is diagonalizable.

If A is an $n \times n$ matrix that is diagonalizable, then A is invertible.

(a) (10 points) Give a basis for the null space NS(A) and the column space CS(A) of the following matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & -1 & 3 \\ -1 & 2 & -2 \end{bmatrix}$$

(b) (10 points) Solve the following linear system

$$x + y + z = 0$$

$$2x - y + 3z = 1$$

$$-x + 2y - 2z = -1$$

2. (10 points) Consider the matrix

 $\begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}$

Determine $\dim(E_1)$, $\dim(E_2)$ and $\dim(E_3)$.

0 0 0 0 $0 \ 1$ $1 \ 0 \ 0$ 3. (10 points) Determine which of the following matrices are similar to the matrix $\begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}$ $[1 \ 0 \ 0 \ 0]$ $\begin{bmatrix} 3 & 0 & 0 & 0 \end{bmatrix}$ $[1 \ 1 \ 0 \ 0]$ Γ1 0 1 $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ $1 \ 0 \ 0$ $\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}$

4. (10 points) Suppose that the characteristic polynomial of A is $(\lambda - 1)^4 (\lambda - 2)^3$. If dim $(E_1) = 2$ and dim $(E_2) = 1$, give the possible (up to permutation) Jordan Normal Forms of A.

5. Consider the homogeneous first order linear differential system

$$x' = x - y + z$$

$$y' = 2y + z$$

$$z' = 2z$$

where x, y, z are all functions of the variable t.

(a) (5 points) Write the system in the matrix form Y' = AY + G.

(b) (5 points) Is the matrix A diagonalizable? Explain your answer.

(c) (5 points) Find the general solution to the homogeneous system Y' = AY.

6. (20 points) Solve the initial value problem

$$Y' = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} Y + \begin{bmatrix} e^x \\ 0 \end{bmatrix}, \qquad Y(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

7. Let's consider the non-homogeneous first order linear differential system

$$x' = -4x - 3y + 3z y' = 3x + 2y - 3z + e^t z' = -3x - 3y + 2z$$

where x, y, z are all functions of the variable t.

(a) (5 points) Write the system in the matrix form Y' = AY + G.

(b) (15 points) Find a diagonal matrix D and an invertible matrix P such that $D = P^{-1}AP$.

(c) (5 points) Find the general solution to the homogeneous system Z' = DZ.

(d) (5 points) Use the result of the previous question to find the general solution Y_H to the homogeneous system Y' = AY, and find a fundamental set, Y_1 , Y_2 , Y_3 , of solutions to this system.

(e) (15 points) Using the matrix $M = [Y_1 \ Y_2 \ Y_3]$, compute a particular solution Y_p to the non-homogeneous system Y' = AY + G.

(f) (5 points) Use the result of the previous question to find the general solution to the non-homogeneous system Y' = AY + G.

8. Consider the following system:

$$y_1'' = y_1' + y_2' + e^x$$

 $y_2'' = y_1 + y_2 + \sin(x)$

where y_1 and y_2 are functions of x.

(a) (10 points) Write this system as a system of first order liner differential equations in the form Y' = AY + G.

(b) (5 points) Give a condition on A so that we can solve this system with the techniques learned in this class.

9. (a) (5 points) Write the following differential equation as a system of first order linear equations:

$$y'' + 4y' + 3y = 0$$

(b) (10 points) Solve the system from part a).

(c) (5 points) Verify your solution by computing the kernel of the appropriate differential operator.

10. (10 points) Let be A an $n \times n$ matrix, prove that Rank(A) = n if and only if A is invertible.

11. (10 points) Prove that if A and B are row equivalent, then NS(A) = NS(B).

12. (10 points) Let A be an $n \times n$ matrix. Prove that a number λ is an eigenvalue of A if and only if

$$\det(\lambda I - A) = 0.$$

13. (10 points) Prove that if A is similar to B, and A is diagonalizable, then B is also diagonalizable.

14. (10 points) Prove that a matrix A is invertible if and only if 0 is not an eigenvalue of A.

15. (20 points) State 5 properties that are all equivalent to a matrix being invertible.