/15

Problem 1

Verify that
$$\alpha = \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\\end{bmatrix}, \begin{bmatrix} 1\\0\\0\\\end{bmatrix} \right\}$$
 is a basis for \mathbb{R}^3 . Then, for $v = \begin{bmatrix} 3\\4\\5\\\end{bmatrix}$, find $[v]_{\alpha}$.

Problem 2

Explain why $\alpha = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix} \right\}$ does not form a basis for \mathbb{R}^3 . Check that the two vectors are linearly independent, and find another vector, v, such that $\beta = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix}, v \right\}$ is a basis for \mathbb{R}^3 .

Problem 3

For the matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 3 \end{bmatrix}$, find a basis for NS(A) and $\dim(NS(A))$.

Problem 4 For the matrix $A = \begin{bmatrix} 1 & 0 & 0 & 4 & 5 \\ 0 & 1 & 0 & 3 & 2 \\ 0 & 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$, find a basis for NS(A) and $\dim(NS(A))$.