Problem 1

Verify that $\alpha=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$ is a basis for \mathbb{R}^{3}. Then, for $v=\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]$, find $[v]_{\alpha}$.

Problem 2

Explain why $\alpha=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}$ does not form a basis for \mathbb{R}^{3}. Check that the two vectors are linearly
independent, and find another vector, v, such that $\beta=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], v\right\}$ is a basis for \mathbb{R}^{3}.

Problem 3

For the matrix $A=\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 3\end{array}\right]$, find a basis for $N S(A)$ and $\operatorname{dim}(N S(A))$.

Problem 4

For the matrix $A=\left[\begin{array}{lllll}1 & 0 & 0 & 4 & 5 \\ 0 & 1 & 0 & 3 & 2 \\ 0 & 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$, find a basis for $N S(A)$ and $\operatorname{dim}(N S(A))$.

