Determine if $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 3 & -2 \\ 0 & 0 & 2 \end{bmatrix}$ is diagonalizable. If it is, find a diagonal matrix D, and an invertible matrix P such that $D = P^{-1}AP$.

Determine if $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ is diagonalizable. If it is, find a diagonal matrix D, and an invertible matrix P such that $D = P^{-1}AP$.

/15

Problem 3

Determine if $A = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix}$ is diagonalizable. If it is, find a diagonal matrix D, and an invertible matrix P such that $D = P^{-1}AP$.

Suppose that A is a matrix whose characteristic polynomial is $(\lambda - 2)^2(\lambda + 1)^2$, find all possible Jordan Normal Forms of A (up to permutation of the Jordan blocks).

/15

Problem 5

Suppose that A is a matrix whose characteristic polynomial is $(\lambda - 4)^4 (\lambda - 1)^2$, find all possible Jordan Normal Forms of A (up to permutation of the Jordan blocks).

Suppose that A is a matrix whose characteristic polynomial is $(\lambda - 2)^2(\lambda + 1)^2$, and dim $(E_2) = 1$ and dim $(E_{-1}) = 2$. Find the Jordan Normal Form of A.

Problem 7

Suppose that A is a matrix whose characteristic polynomial is $(\lambda - 3)^2(\lambda - 5)$, and A is not diagonalizable. Find the Jordan Normal Form of A.

Suppose that A is an $n \times n$ square matrix with only one eigenvalue, r. Prove that if A = rI, then A is diagonalizable.

Problem 9

Suppose that A is an $n \times n$ square matrix with only one eigenvalue, r. Prove that if A is diagonalizable, then A = rI. Hint: If A is diagonalizable, then $\dim(E_r) = n$. Notice that E_r consists of vectors in R^n and therefore each standard basis vector in R^n is an eigenvector with eigenvalue r. Now notice that $AI = A[e_1e_2\cdots e_n]$ and use block multiplication to conclude the result.