Math 307
Spring 2019
Exam 2
3/27/19
Time Limit: ∞ / ∞
\qquad

1. Let $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ and $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be transformations defined by

$$
S\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
2 x+y \\
x-y
\end{array}\right], \quad T\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x-4 y \\
3 x
\end{array}\right]
$$

(a) (5 points) Show that S and T are both linear transformations.
(b) (5 points) Find $S T\left[\begin{array}{l}x \\ y\end{array}\right]$ and $T^{2}\left[\begin{array}{l}x \\ y\end{array}\right]$.
(c) (5 points) Find the matrices of S and T with respect to the standard basis for \mathbb{R}^{2}.
2. (a) (10 points) Prove or provide a counter example: If T is a linear transformation, then so is $T+T^{2}$.
(b) (10 points) Let $D: C^{\infty}(-\infty, \infty) \rightarrow C^{\infty}(-\infty, \infty)$ be the usual derivative operator. Find a basis for the kernel of the operator

$$
\left(D^{2}-4 D+4\right)^{2}\left(D^{2}+1\right)
$$

3. Let α be the standard basis for \mathbb{R}^{3} and β the basis consisting of the vectors

$$
\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

(a) (5 points) Find the change of basis matrix from α to β.
(b) (10 points) Find the change of basis matrix from β to α.
(c) (10 points) Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ by $T\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}x-y \\ y-z \\ 2 x+3 y-3 z\end{array}\right]$, Find $[T]_{\alpha}^{\alpha}$.
(d) (10 points) Express $[T]_{\beta}^{\beta}$ as the product of the three matrices found above.
4. (a) (10 points) Let A be an $n \times n$ matrix. Prove that a number λ is an eigenvalue of A if and only if

$$
\operatorname{det}(\lambda I-A)=0
$$

(b) (10 points) Let $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$. Find the eigenvalue(s) and associated eigenvectors of A.
(c) (10 points) Define what it means for A to be similar to a matrix B, and what it means for A to be diagonalizable. Prove that if A is similar to B, and A is diagonalizable, then B is also diagonalizable.
5. (10 points) Find the eigenvalues and associated eigenvectors of the matrix

$$
A=\left[\begin{array}{ll}
-4 & 5 \\
-4 & 4
\end{array}\right]
$$

6. Let $A=\left[\begin{array}{lll}2 & 2 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right]$
(a) (10 points) Find the eigenvalues and associated eigenvectors of A.
(b) (10 points) Determine if A is diagonalizable. If it is, give the matrix P and the diagonal matrix D such that $P^{-1} A P=D$.
7. Let $A=\left[\begin{array}{lll}0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0\end{array}\right]$
(a) (10 points) Find the eigenvalues and associated eigenvectors of A.
(b) (10 points) Determine if A is diagonalizable. If it is, give the matrix P and the diagonal matrix D such that $P^{-1} A P=D$.
8. Let $A=\left[\begin{array}{ccc}5 & 6 & 2 \\ 0 & -1 & -8 \\ 1 & 0 & -2\end{array}\right]$
(a) (10 points) Find the eigenvalues and associated eigenvectors of A.
(b) (10 points) Determine if A is diagonalizable. If it is, give the matrix P and the diagonal matrix D such that $P^{-1} A P=D$.
9. Suppose that A is a matrix with characteristic polynomial $p(\lambda)=(\lambda-3)^{2}(\lambda-2)^{2}$.
(a) (10 points) If $\operatorname{dim}\left(E_{3}\right)=2$ and $\operatorname{dim}\left(E_{2}\right)=2$ what is the Jordan Normal Form of A ?
(b) (10 points) If $\operatorname{dim}\left(E_{3}\right)=1$ and $\operatorname{dim}\left(E_{2}\right)=2$ what is the Jordan Normal Form of A ?
10. (20 points) Suppose that A is a matrix with characteristic polynomial $p(\lambda)=(\lambda+1)^{2}(\lambda-5)^{4}$. If we decide on a Jordan Normal Form, J, of A as

$$
J=\left[\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right]
$$

where B_{1} is a 2×2 matrix and B_{2} is a 4×4 matrix, what are the possibilities (up to permutation of the Jordan blocks) of B_{1} and B_{2} ?
11. (10 points) Is the following $n \times n$ matrix diagonalizable?

$$
\left[\begin{array}{ccccc}
1 & 1 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right]
$$

12. (10 points) Prove that if A has one eigenvalue, r, then A is diagonalizable if and only if $A=r I$.
13. (10 points) Prove that a matrix A is invertible if and only if 0 is not an eigenvalue of A.
14. (10 points) Prove that if A is invertible and λ is an eigenvalue of A, then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1}.
15. (10 points) Prove that if λ is an eigenvalue of A, then λ^{k} is an eigenvalue of A^{k}.
16. (10 points) Suppose that A and B are similar matrices. Show that they have the same eigenvalues.
17. (10 points) Prove or provide a counter example: Similar matrices have the same eigenvectors.
