Math 307
Spring 2019
Exam 3 - Practice
4/17/19
Time Limit: 50 min.

Problem	Points	Score
1	10	
2	15	
3	55	
4	35	
5	40	
Total:	155	

1. Consider the system of differential equations:

$$
\begin{aligned}
& y_{1}^{\prime}=2 y_{1} \\
& y_{2}^{\prime}=-y_{2} \\
& y_{3}^{\prime}=15 y_{3}
\end{aligned}
$$

(a) (5 points) Find the general solution, Y_{H}.
(b) (5 points) Solve the initial value problem $Y(1)=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
2. (15 points) Suppose that Z is a solution to $Y^{\prime}=B Y$, and that A and B are similar matrices. Prove that there exists an invertible matrix P such that $P Z$ is a solution to $Y^{\prime}=A Y$.
3. Consider the system of differential equations:

$$
\begin{aligned}
y_{1}^{\prime} & =y_{1}+2 y_{2}+y_{3} \\
y_{2}^{\prime} & =2 y_{1}+y_{2}+y_{3} \\
y_{3}^{\prime} & =y_{3}
\end{aligned}
$$

(a) (5 points) Write the system in the form $Y^{\prime}=A Y$.
(b) (10 points) For the matrix A, find the eigenvalues.
(c) (10 points) For each eigenvalue, find a corresponding eigenvector. In other words, find the eigenpairs.
(d) (5 points) Find an invertible matrix P, and diagonal matrix D such that $P^{-1} A P=D$.
(e) (5 points) Find the general solution to the system $Y^{\prime}=D Y$.
(f) (10 points) Find the general solution to the system $Y^{\prime}=A Y$.
(g) (10 points) Solve the initial value problem $Y(0)=\left[\begin{array}{c}-4 \\ 0 \\ 3\end{array}\right]$ for $Y^{\prime}=A Y$.
4. (35 points) Let $A=\left[\begin{array}{cc}-2 & -4 \\ 5 & 2\end{array}\right]$. Give a real-valued general solution to the equation $Y^{\prime}=A Y$.
5. Suppose that the velocity of an object is given by the vector

$$
v=\left[\begin{array}{c}
3 x+2 y+z \\
2 y+3 z \\
2 z
\end{array}\right]
$$

where x, y and z are the coordinates of the object's position (they are functions of time).
(a) (30 points) Find a general solution for the object's position. (part b) is on the next page)
(b) (10 points) Give the object's position when $t=1$ if it's position is $(-7,2,3)$ when $t=0$.

