Math 241: HW 12

Due on Friday, October 18
Fall '13

John "Curlee" Robertson

Problem 1

For the following functions give the critical points, intervals of increase/decrease, intervals of concavity, any local min/max, equations of any asymptotes (horizontal, vertical, oblique). Finally give a sketch of the given function.

$$
\begin{gathered}
f(x)=x^{2}-4 x+3 \\
g(x)=-2 x^{3}+6 x^{2}-3 \\
h(x)=\frac{x^{3}}{x^{2}+1} \\
k(x)=\frac{x^{2}-3}{x-2}
\end{gathered}
$$

Problem 2

Suppose that you are to produce a can (a right cylinder with circular base) with a volume of $1000 \mathrm{~cm}^{3}$. What are the dimensions the minimize the amount of material needed to construct said can? Hint: For any cylinder, the volume is the base area, B_{A}, times the height, so that $V=\pi r^{2} h$. The surface area of such a cylinder is 2 circles of radius r plus a rectangle of height h and length $2 \pi r$ (why?). Now minimize the surface area using your constraint equation (volume) to write the surface area as a function of one variable.

Problem 3

Determine the point on the graph of $y=\sqrt{x}$ that is closest to the point $(3,0)$.

