Math 241: HW 6

Due on Wednesday, September 18
Fall '13

John "Curlee" Robertson

Problem 1

For the given function, find it's derivative by using the POWER RULE (application of other rules is NOT permitted).

$$
\begin{gathered}
b(x)=\frac{10}{x^{5}} \quad \text { hint: } \frac{10}{x^{5}}=10 x^{-5} \\
f(x)=2 x^{10}+\pi x^{\sqrt{5}}+\frac{10}{x^{5}}+3 x+7 \\
g(x)=\frac{x^{5}+x^{\sqrt{2}}}{x} \quad \text { Hint: simplify first } \\
h(x)=\frac{x^{m} x^{n}+100 x^{k+1}}{x^{k}} \quad \text { for constants } \mathrm{m}, \mathrm{n}, \mathrm{k}
\end{gathered}
$$

Problem 2

Removable Discontinuity: Sometimes we can force a discontinuous function to be continuous by adding a single point. When we can do this, we call the discontinuity a removable discontinuity. A great example of this is the function $f(x)=\frac{\sin (x)}{x}$, who is perfectly continuous on his domain (which is all the reals except 0). From $f(x)$ we can construct a new function, $F(x)$, by defining a value for $F(x)$ at $x=0$ and then making $F(x)=f(x)$ for all $x \neq 0$. What value should $F(0)$ be if we desire $F(x)$ to be continuous at $x=0$?

