Instructor: John "Curlee" Robertson

Monday September 9, 2013
Problem 1.1. Show that

$$
\lim _{x \rightarrow \infty} \sqrt{x^{2}+x+1}-x=\frac{1}{2}
$$

Proof. First we do some algebraic manipulation:

$$
\begin{aligned}
\sqrt{x^{2}+x+1}-x & =\left(\sqrt{x^{2}+x+1}-x\right) \frac{\sqrt{x^{2}+x+1}+x}{\sqrt{x^{2}+x+1}+x} \\
& =\frac{x^{2}+x+1-x^{2}}{\sqrt{x^{2}+x+1}+x} \\
& =\frac{x+1}{\sqrt{x^{2}\left(1+\frac{1}{x}+\frac{1}{x^{2}}\right)}+x}
\end{aligned}
$$

Remember that $\sqrt{x^{2}}=|x|$, so when we "pull out" that x^{2} we get

$$
=\frac{x+1}{|x| \sqrt{\left(1+\frac{1}{x}+\frac{1}{x^{2}}\right)}+x}
$$

Since x is positive ($x \rightarrow \infty$ so I would hope that this is the case), $|x|=x$

$$
\begin{aligned}
& =\frac{x+1}{x \sqrt{\left(1+\frac{1}{x}+\frac{1}{x^{2}}\right)}+x} \\
& =\frac{x\left(1+\frac{1}{x}\right)}{x\left(\sqrt{\left(1+\frac{1}{x}+\frac{1}{x^{2}}\right)}+1\right)} \\
& =\frac{1+\frac{1}{x}}{\sqrt{\left(1+\frac{1}{x}+\frac{1}{x^{2}}\right)}+1}
\end{aligned}
$$

Now we can say that

$$
\lim _{x \rightarrow \infty} \sqrt{x^{2}+x+1}-x=\lim _{x \rightarrow \infty} \frac{1+\frac{1}{x}}{\sqrt{\left(1+\frac{1}{x}+\frac{1}{x^{2}}\right)}+1}
$$

Remember that $\lim _{x \rightarrow \infty} \frac{1}{x}=0$, so when we evaluate the limit we get

$$
=\frac{1}{\sqrt{1}+1}=\frac{1}{2}
$$

Question: When we evaluated the limit, what limit laws did we use?
Now we work an almost identical problem but with a slight change. We will need another version of "curlee's theorem".

Theorem 1.2. (Curlee's Theorem 2) Suppose that

$$
\lim _{x \rightarrow c} f(x)=a \in \mathbb{R} \neq 0 \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=0
$$

. Then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}= \pm \infty \quad \text { or does not exist }
$$

Note: this works for any $c \in \mathbb{R}$ and $A L S O$ for $c=\infty$ or $c=-\infty$.
Problem 1.3. Show that

$$
\lim _{x \rightarrow-\infty} \sqrt{x^{2}+x+1}-x=-\infty
$$

Proof. First we do some algebraic manipulation:

$$
\begin{aligned}
\sqrt{x^{2}+x+1}-x & =\left(\sqrt{x^{2}+x+1}-x\right) \frac{\sqrt{x^{2}+x+1}+x}{\sqrt{x^{2}+x+1}+x} \\
& =\frac{x^{2}+x+1-x^{2}}{\sqrt{x^{2}+x+1}+x} \\
& =\frac{x+1}{\sqrt{x^{2}\left(1+\frac{1}{x}+\frac{1}{x^{2}}\right)}+x}
\end{aligned}
$$

Remember that $\sqrt{x^{2}}=|x|$, so when we "pull out" that x^{2} we get

$$
=\frac{x+1}{|x| \sqrt{\left(1+\frac{1}{x}+\frac{1}{x^{2}}\right)}+x}
$$

Since x is negative, $|x|=-x$

$$
\begin{aligned}
& =\frac{x+1}{-x \sqrt{\left(1+\frac{1}{x}+\frac{1}{x^{2}}\right)}+x} \\
& =\frac{x\left(1+\frac{1}{x}\right)}{x\left(-\sqrt{\left(1+\frac{1}{x}+\frac{1}{x^{2}}\right)}+1\right)} \\
& =\frac{1+\frac{1}{x}}{-\sqrt{\left(1+\frac{1}{x}+\frac{1}{x^{2}}\right)}+1}
\end{aligned}
$$

Now we can say that

$$
\lim _{x \rightarrow-\infty} \sqrt{x^{2}+x+1}-x=\lim _{x \rightarrow-\infty} \frac{1+\frac{1}{x}}{-\sqrt{\left(1+\frac{1}{x}+\frac{1}{x^{2}}\right)}+1}
$$

Since the denominator goes to 0 and the numerator goes to 1 we may invoke Curlee's Theorem 2 to say that $\lim _{x \rightarrow-\infty} \frac{1+\frac{1}{x}}{-\sqrt{\left(1+\frac{1}{x}+\frac{1}{x^{2}}\right)}-1}= \pm \infty$. To decide which infinity, we need to see that the denominator is positive (for any $x \leq-2$) and the numerator is always positive, hence,

$$
\lim _{x \rightarrow-\infty} \frac{1+\frac{1}{x}}{-\sqrt{\left(1+\frac{1}{x}+\frac{1}{x^{2}}\right)}+1}=\infty
$$

