INSTRUCTOR: JOHN “CURLEE’” ROBERTSON

Monday September 9, 2013

Problem 1.1. Show that
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Proof. First we do some algebraic manipulation:

Vii+r+ 14z
vel+zr+l—os=Wl+zr+1—1
( )\/xQ—l—x—l—l—i—x

P4+ 1-a?
Vel+zr+1+zx

r+1
\/w2(1+%+%2)+$

Remember that v22 = |z|, so when we “pull out” that 2% we get
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Since x is positive (z — oo so I would hope that this is the case), |z| =«
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Now we can say that

1+1
lim Va2 +x+1—2 = lim z

=00 T A+ I+ 5+

Remember that lim,_, % = 0, so when we evaluate the limit we get




Question: When we evaluated the limit, what limit laws did we use?

Now we work an almost identical problem but with a slight change. We will need another
version of ”curlee’s theorem”.

Theorem 1.2. (Curlee’s Theorem 2) Suppose that

lim f(r) =a€R#0 and limg(z)=0

. Then
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Note: this works for any ¢ € R and ALSO for ¢ = 0o or ¢ = —o0.

Problem 1.3. Show that
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Proof. First we do some algebraic manipulation:
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Remember that vz2 = |z, so when we “pull out” that z* we get
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Since x is negative, |z| = —x
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Now we can say that
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Since the denominator goes to 0 and the numerator goes to 1 we may invoke Curlee’s Theorem
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denominator is positive (for any x < —2) and the numerator is always positive, hence,

2 to say that lim, . = 4o00. To decide which infinity, we need to see that the
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