What is required of a function in order for it to have an inverse? Why do we require this?

Suppose that f is a differentiable, one-to-one function and $f(a)=b$. Express $\left(f^{-1}\right)^{\prime}(b)$ in terms of $f^{\prime}(a)$.

Give the domain and range of $f(x)=\tan ^{-1}(x)$. What is $f^{\prime}(1)$?

State the definition of $\ln (x)$ using a definite integral. Explain how we defined the number e this semester.

Evaluate $\frac{d}{d x} \int_{1}^{x} \frac{1}{t} d t$.

Integrate:
$\int_{1}^{9} \frac{4}{x-10} d x$
$\int \frac{x^{2}}{x^{3}+71} d x$
$\int_{1}^{e^{2}} \frac{1}{\ln (x) x} d x$
$\int \tan (x) d x$
$\int_{0}^{1} \frac{e^{x}}{e^{x}+1} d x$
$\int x e^{x^{2}} d x$

Take the derivative of the following. $f(x)=\left(x^{2}+1\right)^{x}$

$$
g(x)=4^{x} \ln (x)
$$

$$
h(x)=\ln \left(\sin \left(e^{x}\right)\right)
$$

$$
k(x)=\sin ^{-1}\left(2^{x}\right)
$$

$$
l(x)=(\sin (x))^{x}
$$

$$
m(x)=\arctan \left(e^{2 x}\right)
$$

$$
n(x)=x^{\sqrt{3}}(\sqrt{3})^{x}
$$

(this one is slightly tricky, it is included for fun) $h(x)=x^{x^{x}}$

Use the Laws of Logarithms to simplify the following as much as possible (hint: beware of trickery) :

$$
\ln \left(x^{2}\right) \ln \left(e^{5}\right)
$$

$$
\frac{\ln (64)}{\ln (2)}
$$

$$
25^{\log _{5}(6)}
$$

$$
\ln \left[x^{4}\left(\sin \left(x^{2}\right)\right)-x^{3} e^{x}\right]
$$

$\ln \left(\frac{x^{4}\left(\sin \left(x^{2}\right)\right)}{\pi^{3} e^{x}}\right)$

Simplify: $\sin \left(\tan ^{-1}(8)\right)$

$$
\int \frac{1}{1+5 x^{2}} d x
$$

$$
\int \frac{1}{\sqrt{1-5 x^{2}}} d x
$$

Compute the following limits, and show your work. (Even if you know the answer immediately, show all the required work, e.g. using L'Hôpital's Rule.) $\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}$
$\lim _{n \rightarrow \infty}\left(1-\frac{4}{n}\right)^{n}$
$\lim _{x \rightarrow 0^{+}} x \ln \left(\frac{10}{x}\right)$
$\lim _{x \rightarrow \frac{\pi}{2}+} \frac{1}{\cos (x)}-\frac{1}{x-\frac{\pi}{2}}$
$\lim _{n \rightarrow \infty} e^{n} \ln \left(1-\frac{1}{n}\right)$
$\lim _{n \rightarrow \infty} \frac{3+(.2)^{n}}{7-\frac{1}{n}}$
$\lim _{n \rightarrow \infty} \frac{10^{n}}{n}$

Integrate.
$\int x \sin (x) d x$

$$
\int \tan ^{-1}(x) d x
$$

$$
\int x e^{x} d x
$$

$$
\int \sin (2 x) e^{x} d x
$$

$$
\int x^{2} \ln (x) d x
$$

$$
\int \cos ^{5}(x) \sin ^{3}(x) d x
$$

$$
\int \cos ^{4}(x) \sin ^{3}(x) d x
$$

$$
\int \cos ^{2}(x) \sin ^{2}(x) d x
$$

$$
\int \sec ^{4}(x) d x
$$

$$
\int \tan ^{3}(x) d x
$$

$$
\int \frac{\sqrt{x^{2}-4}}{x} d x
$$

$$
\int \frac{1}{\sqrt{x^{2}+9}} d x
$$

$$
\int_{0}^{1 / 2} \frac{4 x^{2}}{\left(1-x^{2}\right)^{3 / 2}} d x
$$

$$
\int \frac{e^{x}}{\left(1+e^{2 x}\right)^{3 / 2}} d x
$$

$$
\int \frac{5 x-13}{(x-3)(x-2)} d x
$$

$$
\int \frac{x+4}{x^{2}+2 x+1} d x
$$

$$
\int \frac{1}{1-4 x^{2}} d x
$$

$$
\int \frac{x^{3}}{x^{2}+2 x} d x
$$

$$
\int \frac{1}{x^{3}+x} d x
$$

$$
\int_{0}^{1} \frac{1}{x-1} d x
$$

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x
$$

$$
\int_{0}^{1} \ln (x) d x
$$

$$
\int_{0}^{\pi / 2} \sec ^{2}(x) d x
$$

$$
\int_{-1}^{1} \frac{1}{x^{6}} d x
$$

$$
\int_{1}^{5} \frac{1}{\sqrt{x-1}} d x
$$

$$
\int_{0}^{\infty} \frac{8}{\left(x^{2}+1\right)^{2}} d x
$$

Determine if the following series converge or diverge. Clearly state which tests you are using and show the necessary work.

$$
\sum_{n=8}^{\infty} \frac{n^{2}}{n^{4}+n-8}
$$

$$
\sum_{n=1}^{\infty} \frac{n^{5}}{n^{n}}
$$

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}
$$

$$
\sum_{n=1}^{\infty} \frac{(\arctan (n))^{2}}{1+n^{2}}
$$

$$
\sum_{n=3}^{\infty} \frac{\ln (\ln (n))}{n \ln (n)}
$$

$$
\sum_{n=1}^{\infty} \frac{2^{n}}{n!}
$$

(Continued from previous page)
$\sum_{n=0}^{\infty} \frac{2^{n}}{5^{n}}$
$\sum_{n=1}^{\infty} \frac{2^{n}+n^{2}}{3^{n}+n^{3}}$
$\sum_{n=2}^{\infty} \frac{2^{n}}{(\ln (n))^{n^{2}}}$
$\sum_{n=2}^{\infty} \frac{n^{2}}{\sqrt{n^{6}+4}}$
$\sum_{n=1}^{\infty} \frac{10 n^{2}+n \sin (n)}{n^{4}}$
$\sum_{n=1}^{\infty} \frac{10 n^{107}}{(3.2)^{n}}$
$\sum_{n=1}^{\infty} \frac{n^{3}+\sqrt{n}}{2 n^{3}+1}$

Determine if the following series are absolutely convergent, conditionally convergent or divergent.
$\sum_{n=1}^{\infty} \frac{\sin (n)}{n^{2}}$
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$
$\sum_{n=2}^{\infty} \frac{(-1)^{n}}{(\ln (n))^{2} n}$
$\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{1.02}}$

For what p does $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converge?

For what p does $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{p}}$ converge?

If any of the following series converges find the sum. If not, explain why. $\sum_{n=1}^{\infty} \arctan (n-1)-\arctan (n)$
$\sum_{n=5}^{\infty} \frac{3}{\ln (n)}-\frac{3}{\ln (n+1)}$
$\sum_{n=1}^{\infty} \frac{1}{2^{n}}$
$\sum_{n=2}^{\infty} \frac{4}{3^{2 n}}$
$\sum_{n=0}^{\infty} \frac{3^{n+3}}{7^{2 n}}$
$\sum_{n=8}^{\infty} \sqrt{n+1}-\sqrt{n}$
$\sum_{n=0}^{\infty} \frac{2^{n+1}+3}{5^{n}}$

Use geometric series to write the following decimals as a single fraction:
.$\overline{1}$
$1 . \overline{14}$

Give the radius and interval of convergence. On the boundary of the interval of convergence, are there any points of conditional convergence?

$$
\sum_{n=1}^{\infty} \frac{(2 x)^{n}}{5^{n}}
$$

$$
\sum_{n=1}^{\infty} \frac{(x-4)^{n}}{n}
$$

$$
\sum_{n=1}^{\infty} \frac{x^{n}}{n!}
$$

$$
\sum_{n=1}^{\infty} \frac{x^{n} n!}{(2 n+1)!}
$$

$$
\sum_{n=1}^{\infty} \frac{(x+1)^{n}}{n^{2}}
$$

$$
\sum_{n=1}^{\infty} \frac{(x+2)^{n}}{5^{n}}
$$

$$
\sum_{n=1}^{\infty} n^{2}(x+4)^{n}
$$

Starting with the geometric power series

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\ldots=\sum_{n=0}^{\infty} x^{n}
$$

give a power series expansion for the following functions, as well as the radius of convergence.
$\frac{1}{1-2 x} \quad$ centered at $x=0$
$\frac{1}{-x} \quad$ centered at $x=-1$
$\frac{1}{3-12 x^{2}} \quad$ centered at $x=0$
$\frac{-2 x}{\left(1+x^{2}\right)^{2}} \quad$ centered at $x=0$
$\arctan (x) \quad$ centered at $x=0$

Give the Taylor or Maclaurin Series for the following functions. Make sure to give the radius of convergence for the series as well.
$\sin (x) \quad$ centered at $x=0$
$\cos (x) \quad$ centered at $x=\pi$
$\cos (x) \quad$ centered at $x=\frac{\pi}{6}$
$e^{x} \quad$ centered at $x=2$

Give the Taylor series for e^{x} centered at 0 . Use this to find the a power series for $e^{-x^{2}}$ THEN find a power series for $\int e^{-x^{2}} d x$ (make sure to give the radius of convergence).

Give the Taylor series for $\sin (x)$ centered at 0 . Use this to find the a power series for $\frac{\sin (x)}{x}$ THEN find a power series for $\int \frac{\sin (x)}{x} d x$ (make sure to give the radius of convergence).

Calculate the Taylor polynomial of order 3 for $f(x)=4^{x}$ centered at $a=0$.

Calculate the Taylor polynomial of order 2 for $f(x)=\arctan (x)$ centered at $a=1$.

Calculate the Taylor polynomial of order 3 for $f(x)=e^{x^{2}}$ centered at $a=1$.

Using a Taylor polynomial of order 3 centered at 16, approximate $\sqrt{17}$.

Using a Taylor polynomial of order 4 centered at 0 , approximate $\cos \left(\frac{1}{10}\right)$.

Using a Taylor polynomial of order 4 centered at 1, approximate $\ln (11 / 10)$.

New Problems Added Aug 7th:

Use a power series to find the antiderivative of the given function
$f(x)=\frac{\sin (x)}{x}$

$$
f(x)=\sin \left(x^{5}\right)
$$

$$
f(x)=e^{x^{3}}
$$

