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Math 135 Linear Equations Examples

Lines and Linear Equations
By a linear equation we mean an equation of the form
y=axr+b>b,

where a and b are real numbers. The distingushing feature is the single power of the
variable .

Example 1. The following are examples of linear equations.

1. y=4x + 1.
2. y=x+3.
3. y=u=x.
4. y=5.

A linear equation represents a line, that is the equation determines points in the plane
which we can connect with a straight line. Moreover, given the graph of a line we can
write down its (linear) equation. This requires two ingredients: the slope of the line and
its y-intercept.

The slope represents the change along the line with respect to the y-axis versus the
change with respect to the z-axis. Given two points in in the plane, (x1,y1) and (x2, y2),
the slope of the line through them is found by computing

_changeiny vy —

- changeinz  xo—
The letter m is commonly used for the slope of a line, thus equation (1) becomes
y =mx +b.
Whenever a linear equation has the above form we say that is is in the slope-intercept form.

Example 2. Find the slope of the line passing through the points (0,1) and (—1, 1).
Let (z1,y1) = (—1,1) and let (23, y2) = (0,1). Then,

Y2 — U1
m =

To — X1
11
- 0= (1)
_ 0
1
= 0.

Therefore, the slope of the line through the points (0,1) and (—1,1) is m = 0. See Figure
1.
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Math 135 Linear Equations Examples

Figure 1: A line with slope zero.

It is important to designate a start- and an end-point in slope computations. In the
above example the same answer is obtained when (z1,4:) = (0,1) and (z2,%2) = (—1,1).
A common mistake is to take the points out of order.

Lines parallel to each other have the same slope. Observe that the line in Figure 1 is
parallel to the z-axis. Another name for the z-axis is the line y = 0. It is clear that all hori-
zontal lines have the same slope and are therefore all parallel to one another. Horizontal
lines have a zero slope. These line have the form y = ¢, for some real number c. The line
in the first example is a horizontal line with equation y = 1. Vertical lines are of the from
x = k, where k is any real number.

Example 3. Find the equation of a line perpendicular to the line in Figure 1.

We already know that the equation of the line is y = 1. From this equation we read off
the slope (the coefficient of =) to be 0. We cannot take the negative reciprocal without
dividing by zero, but any vertical line will be perpendicular to y = 1. We can choose
x = —1. The lines y = 1 and z = —1 are perpendicular vertical lines and intersect at the
point (—1, 1). See Figure 2.
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Math 135 Linear Equations Examples

Figure 2: Vertical lines are perpendicular to horizontal lines.

The slopes of two non-vertical perpendicular lines multiply to —1. That is, if m; and
my, are the slopes of two non-vertical perpendicular lines, then m; -m, = —1. Thus, to find
the slope of a line perpendicular to a given line one needs to find the negative reciprocal
of the given slope. Vertical lines are perpendicular to horizontal lines, however, their
slopes do not multiply to —1. This is because vertical lines have undefined slope: on
a vertical line the change along the x-axis between consecutive points is 0, thus in the
process of computing the slope of a vertical line we would be dividing by 0. We will use
the superscript + to denote perpendicular slopes.

Example 4. Find the slope of a line perpendicular to the line given by y = 3z + 1. See Figure 3.
From the slope- mtercept form of the line we read off the slope, the coefficient of z. We
havem =3and m* = -1 = -1

m 3

The final ingredient in determining the equation of a line is the y-intercept. This is
the point where the graph of the line intersects the y-axis (the line x = 0) and is obtained
by letting = 0 in the line’s equation. In the above example z is identically 0, thus the
y-intercept is b = 1. In general, y-intercepts have the form (0, b). Similarly, the z-intercept
is the point on the graph of the line which intersects the z-axis (the line y = 0) and is
obtained by letting y = 0 in the line’s equation. Points that are z-intercepts have the form
(¢,0).
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Math 135 Linear Equations Examples

Figure 3: A line with positive slope.

Example 5. Find the equation of a line parallel to the line 5z + y = 7 and passing through the

origin.
Writing the equation in slope-intercept form we have y = —5x + 7. We read off the slope
to be m = —5. A parallel line will have the same slope. Because the parallel line must

pass through (0, 0), the y-intercept is b = 0. Therefore, the desired equation is y = —5z.

It is possible to write down the equation of a line without explicitly calculating its
y-intercept (see Exercise 7). The point-slope form of a line through a point (z1, y) is

y—y=m(z—x) .

Here the y-intercept is disguised as b = y; — ma;.
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Math 135 Linear Equations Examples

Systems of Linear Equations

Given two or more linear equations we call the point (if one exists) where all the lines
intersect the solution to this system of linear equations. In Figure 2 we saw that the lines
r = —1 and y = 1 intersect at (—1,1). In other words, the solution to the system of

equations
y = 1
r = -1

Example 6. The y-intercept of the line y = max +bis the solution to the system of equations
given by

is the point (—1, 1).

y = mx+b
z = 0,

and the z-intercept is the solution to

y = mx+b
y = 0.

Example 7. The solution to the system of equations,

2r+3y = 3
8r+12y = 12
r+2y = 4,

is the point (18, —11).

The main methods of solving a system of linear equations are elimination and sub-
stitution. When it is easy enough to solve for one variable, as in the example with the
z-intercept, we do so and then make a substitution in the other equation, thereby obtain-
ing an easy-to-solve linear equation in one variable. Remember that multiplying both
sides of an equation by a number does not change the equation. To solve the system

8r+12y = 12
r+2y = 4

by elimination we would first multiply the bottom equation by -6 and obtain the equiva-
lent system,
8r+12y = 12
{ —6r—12y = 24 .

Adding both equations eliminates the variable y and we have 2z = 36, whence z = 18. It
then follows that y = —11 and therefore the solution to the system is (18, —11).

It is absolutely vital to check your answer by making sure that it is the solution to
every equation.
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Math 135 Linear Equations Worksheet

1. Given is the line with equation y = 3z — 2.

(a) Find five points on the line and arrange them in a table.
(b) Graph the line.
(c) Find the z-intercept and the y-intercept.

2. Find the slope-intercept form of the equation of the line through the points (2,7)
and (5,2) and graph it.

3. Consider the line passing through the point (2, 3) with slope m = —1.

(a) Write down the point-slope equation of the line.
(b) Write the equation in the slope-intercept form.

(c) Find all intercepts.
4. Consider the line y = 2z + 3.

(a) Find the equation in slope-intercept form of a parallel line through (2, 5).
(b) Find the equation of a perpendicular line through (2, 7).

5. Consider the line L given by 2z + 3y = 6.

(a) Find the slope and intercepts of the line.

(b) Find a point on the line and a point not on the line.

(c) Write the equation of the line in point-slope form.

(d) Find the equation of a line perpendicular to L, but passing through the same

z-intercept as the line L.

6. Solve:
y = 2z-—-1
20 —by = 10 .
7. Derive the point-slope form of the equation for a line by following these steps.

(a) Let L be the line passing through the fixed point (z1,y;) and an arbitrary point
(z,9)-
(b) Find the general formula for the slope of L.
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Math 135 Linear Equations Worksheet

8. *Write down a system of 3 linear equations that has

(a) Exactly one solution,
(b) No solution,
(c) Infinitely many solutions.

9. **Find a pair of points that together with the points (—2,1) and (2, —2) are the ver-
tices of a square.

10. ***Find all points such that together with the points (—2,1) and (2, —2) they are the
vertices of a right triangle.

Sample Midterm | Sample Final
1 A B C D
4 A B C D
36 A B C D
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Math 135 Linear Equations

Solutions

1. Given is the line with equation y = 3z — 2.

(a) Find five points on the line and arrange them in a table.

Answer 1.
y=3r—2
T Y
-2 -8
0 -2
1 1
3 7
10 28

(b) Graph the line.

Answer 2.

(c) Find the z-intercept and the y-intercept.

Answer 3. To find the z-intercept let y = 0 in y = 3z — 2 and solve for z.

Thus, the z-intercept is the point (2, 0).
To find the y-intercept let x = 0 in y = 3z — 2 and solve for y.

Thus, the y-intercept is the point (0, —2).

University of Hawai‘i at Manoa 12
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Math 135 Linear Equations Solutions

2. Find the slope-intercept form of the equation of the line through the points (2,7)
and (5,2) and graph it.

Answer 4. First calculate the slope. m = 7=2 = —2. So far, we have

5
y:—§x+b.

To solve for b we substitute the coordinates of a point on the line, for example (2, 7).
Then at the point (2, 7), we have

5 5 31
T=——24b <= b=T7T4+2-- <= b= —
3 + * 3 37
and so the answer is
5 +31
= —=T+ .
Y=g

We should check our work by verifying that the other point also lies on the line.
In other words, substituting the point (5, 2) we should obtain an identity. Indeed,

5 31 25 31 6
2=_S .54+ =24 "9,
3°73 3733

3. Consider the line passing through the point (2, 3) with slope m = —1.

(a) Write down the point-slope equation of the line.
Answer 5.
y—3=—(x-2)
(b) Write the equation in the slope-intercept form.
Answer 6.
y=—r+5
(c) Find all intercepts.

Answer 7. The z-intercept is the point (5,0) and the y-intercept is the point
(0,5).

University of Hawai‘i at Manoa 13 ® Spring - 2014
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4. Consider the line y = 2x + 3.

(a) Find the equation in slope-intercept form of a parallel line through (2, 5).

Answer 8. The given line has slope m = 2, so we are looking for a line of the
form y = 2z + b and containing the point (2, 5). Substituting = 2, it follows
that b = 1 in order for y = 5. Thus, we obtain

y=2zx+1.

(b) Find the equation of a perpendicular line through (2, 7).

Answer 9. The line has slope m = 2, so m* = -+ = —1, and a perpendicular

line will have the form y = —3x + b. Substituting the point (2,7) and solving
for b, we obtain

1
y:—§x+8.

5. Consider the line L given by 2z + 3y = 6.

(a) Find the slope and intercepts of the line.

Answer 10. In the slope-intercept form, we have y = —2x + 2 so the slope is
m = —2. The z-intercept is the point (3,0) and the y-intercept is the point (0, 2).

(b) Find a point on the line and a point not on the line.

Answer 11. The point (0, 0) does not lie on the line, but (3, 0) does.

(c) Write the equation of the line in point-slope form.

Answer 12. The slope we already know to be :n = —2 and we can choose the
point (3,0), so
S-3)
=—=(r—3).
Y773

(d) Find the equation of a line perpendicular to L, but passing through the same
z-intercept as the line L.

Answer 13. We have m = —%, so m* = 3. In slope-intercept form, we have

3
y:§$+b,

and we need to have this line pass through the point (3,0). Substituting we

find that b = —g, and so the answer is
3 9
= - — —
Y7979
6. Solve:
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Math 135 Linear Equations Solutions

Answer 14. Proceed by elimination: rewrite the system of equations and add them.

We have,

—2r4+y = -1

2c—b5y = 10,
and whence —4y =9 = y = —%. Then we substitute y = —% into the first equation
and solve for z and obtain = —32. To make sure that (-2, —2) is the solution we

check that it also solves the second equation,

5 9 5 45 40
2 —_—— —_— —_—— p——_— —_— = — = 1 .
( 8) 5( 4) ity T g

7. Derive the point-slope form of the equation for a line by following these steps.

(a) Let L be the line passing through the fixed point (x1,y;) and an arbitrary point
(z,y).
(b) Find the general formula for the slope of L.

Answer 15. The slope of L is given by m = 2=2-. Multiplying thru by (z — z1), we
obtain the point-slope form.

8. *Write down a system of 3 linear equations that has

(a) Exactly one solution.

Answer 16. All the above problems have exactly one solution. Take, for ex-
ample, Problem 6 and introduce a third line which passes through the solution

(—2,—9). We use the slope-intercept form with an arbitrary slope, say m = 2,

and obtain
y = 2z-1
9 _ 5
y+35 = 2(x + g)
2¢c — b5y = 10

(b) No solution.

Answer 17. The only three lines in the plane that do not intersect are parallel
lines. We can take for example the line 2z — 5y = 10 and pick 3 different y-

intercepts.
2¢ -5y = 0
2c—by = 5
2c—5y = 10 .

(c) Infinitely many solutions.

Answer 18. Infinitely many solutions occur when the three lines are in fact the
same line. That is, we have three parallel lines with the same y-intercept.

20 —b5y = 0
dr — 10y = 0
se—gy = 0

University of Hawai‘i at Manoa 15 ® Spring - 2014
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9. **Find a pair of points that together with the points (—2,1) and (2, —2) are the ver-
tices of a square.

Answer 19. Case 1: The segment (—2,1)(2, —2) is a side of a square.
The line through the points (—2, 1) and (2, —2) has the equation

3
y/+2:—1(l’/—2),

and the distance between these points is

d=+/(-2-124+(2+2)2=5.

Each of the two points we are looking for needs to lie on a line parallel to the one
above and also on a line perpendicular to it and passing thru either (-2, 1) or (2, —2).
That is, we need to solve the systems

Y +2 3
{ Voo © 1

and

Py
VU 12+ @ +22 = 5.

In the first system, we substitute for (¢’ + 2) in the second equation.
y q

VI +2)2+ (2 =22 = 5 (1)
\/<§($ _ 2)) b —2P = 5 @
\/ﬁ(ﬂo"—2)2+(a:’—2)2 =5 (3)
Dw-2p =5 @

%(:ﬁ’ —2)? = 25 (5)

(' —2)=9 (6)

2% — 42’ —5=0 (7)

(z' —5)(2'+1) =0 (8)

Thus we obtain the solutions (5,2) and (—1, —6). Following the same procedure
for the second system, we obtain the solutions (—5, —3) and (1,5). But our pair of
solutions must lie on a line parallel to the one thru (—2,1) and (2, —2); i.e., a line
with slope m = —2. So, the possible solutions are the pairs of points (1,5), (5,2),
and (-5, —3), (—1,—6).
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Case 2: The segment (—2, 1)(2, —2) lies on the diagonal of a square.
In this case we will obtain a smaller square of side length % We need to find the

other diagonal; i.e., the line perpendicular to the segment (-2, 1)(2, —2) and passing

through its midpoint (=32, 1-2) = (0, —3). This line has the equation
L1
YTy T

and since half the diagonal is 2, the two points we are looking for need to be distance
2 away from the center of the square, the point (0, —3), as well as the endpoints of

(—2,1)(2, —2). We need to solve the system

y+3 = 57
Jur e = (0.

Omitting the algebra, we obtain the points (2,
possible solution.

N

)and (—2,—2), and this is the third

University of Hawai‘i at Manoa 17 ® Spring - 2014
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10. ***Find all points such that together with the points (—2,1) and (2, —2) they are the
vertices of a right triangle.

Answer 20. We have two cases to consider. First, suppose that the line segment
(—2,1)(2, —2) is the leg of a right triangle. Then, the third vertex lies on a line per-
pendicular to the line thru (—2,1) and (2, —2), and passing thru either (—2,1) or
(2,—-2). If (2, ¢/) is the third vertex, then either

4 4
y'—|—2:g(x'—Q)ory'—lzg(x’—kQ).

The second and more interesting case is that the line segment (—2,1)(2, —2) is the
hypotenuse of a right triangle. From elementary geometry we recall the Theorem
of Thales, which states that the triangle formed by the diameter of a circle and line
segments joining an arbitrary point on the circle with the endpoints of the diameter
is a right triangle. Thus, we need to find the equation of a circle whose diameter is
the line segment (—2, 1)(2, —2). Using the distance formula, we have the diameter

d=+/(-2-12+(2+2)2=5,

and the midpoint of our circle,

T1+T2 Y1ty _ 0_}
2 2 2]

This is the circle of radius 3, centered at the point (0, —3).

The answer is disappointing, because we do not explicitly give the coordinates of
a point or points. In fact there are infinitely many possibilities, so listing them
amounts to writing a formula which computes them for us. We have a formula
for the coordinates of every point which solves the problem. If (2',7) is the third
vertex of the right triangle with vertices (-2, 1) and (2, —2), then either

4
y,+2:§($,—2)7

or

University of Hawai‘i at Manoa 18 ® Spring - 2014



Absolute Value and Interval Notation Examples

Math 135

The absolute value of a number z, denoted |z|, is defined as a piece-wise linear function,

meaning it is composed of lines. In particular, we are using the lines y = x and y

Absolute Value

_$’

We can graph these lines, but we are only using a portion of each graph to construct the

graph of the absolute value function.

Figure 5: The absolute value function.

® Spring - 2014
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Math 135 Absolute Value and Interval Notation Examples

We interpret |z| according to what z is. In case z is a number, the absolute value simply
removes any and all minus signs.

Example 1.
1. | =3]=3.
2. 5| =5.
3. | —ml=m.

In the case that the expression inside the absolute value signs is not a number, we must
follow the definition above and consider both possibilities, that the expression is either
positive or negative.

Example 2. Suppose x > 3. Rewrite |x — 1| without using the absolute value sign.

Without any additional information we do not know weather x — 1 is positive or negative.
Thus it would not be correct to write |z — 1| =  — 1. However, because we are given
the information that + > 3, we know that z — 1 is always at least 2 and is therefore a
positive quantity. With this knowledge we apply the definition of absolute value, and
obtain |z — 1| =z — 1.

Example 3. Suppose x > 3. Rewrite |2 — x| without using the absolute value sign.

In this example, we know z is at least 3, hence 2 — z is a number that is less than -1. Con-
sequently the expression inside the absolute value signs is always negative, and applying
the definition of absolute value we obtain

2—z|=—2—-2)=2-2.
The expression = — 2 is positive for all values of z > 3.

Another way to interpret the expression |z — 1| is to think of the distance between z
and 1. This becomes apparent if we draw a picture.

T 0

| |
I I

R

Now, as z is to the left of 0, it is a negative number, but the distance between = and 0 is
a positive quantity by definition. Hence |z| can be thought of as the distance between 0
and the point on the number line at position . Shifting, we can generalize this situation,

A 0 B

| | |
I I I

R

The distance between x and 0 is ||, and we can also say the same thing by writing |« — 0.
Thus, the distance between A and B is expressed as |A — B|.

University of Hawai‘i at Manoa 20 ® Spring - 2014
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Interval Notation

We now introduce a notation scheme for denoting intervals on the number line. Say we
want to denote the following shaded region,

] S s s e ———
6 5 4 3 2 -1 0 1 2 3 4 5 6 R

The shaded region includes numbers between -4 and 5. In case we wish to say some-
thing about the endpoints -4 and 5, we have to be more careful. The expression,

—4<xr<5h,

is pronounced “x is greater than -4 and less than or equal to 5”. How do we indicate on
the number line above that in addition to all numbers strictly between -4 and 5 we are
also including the number 5? One common way to do this is to draw a solid dot at the
point we wish to include and a hollow dot at each point we wish to omit, so our shaded
region becomes,

6 5 4 3 2 -1 0 1 2 3 4 5 6 R

Interval notation allows us to compactly express the shaded region. We list the end-
points, from lest to greatest, or from left to right on the number line. To indicate that we
do not wish to include or shade in a particular endpoint, we use the symbols

°,), ;> <,
and in case we do wish to include or shade in an endpoint, we use the following symbols,

.7]7[’2 S

bl 9

so the interval denoted above, consisting of all numbers greater than -4 and less than or
equal to 5 can be expressed with the compound inequality —4 < x < 5, and equivalently
in interval notation as (—4, 5].

Note that if we only wished to consider all numbers strictly between -4 and 5, that is
—4 < z < 5, then in interval notation we would write (—4, 5), which looks like and may
be easily confused with the point with z-coordinate -4 and y-coordinate 5. It is therefore
important, in order to avoid confusion, to use the word interval in conjunction with in-
terval notation. We would say the interval (—4, 5) is the set of all numbers = that satisfy
the inequality —4 < x < 5, and now there is no confusion with the point (—4, 5).

University of Hawai‘i at Manoa 21 ® Spring - 2014



Math 135 Absolute Value and Interval Notation Worksheet

10.
11.
12.
13.
14.
15.

. Arrange from least to greatest: —2, ||, | — 2|, —| — 1], 1. Use the symbols “ <

. Draw the interval (—2, 3] on the number line.

7

and
14 < b

. Simplify to an integer: |3 (|4 —7|-| —1—2[) + 1.

Rewrite |3 — z| — |z + 1| without using the absolute value sign where:
(@) z >3,
(b) x =2,
() r < —2.

. Write using the absolute value sign the expression representing the distance on the

number line between 2 and —5.
Consider the intervals (—3, 5] and [0, 10].

(a) Draw these intervals on the number line and mark the interval representing
their intersection.

(b) Express the intersection in interval notation.

(c) Express the intersection in set notation without using the absolute value sign.

(d) Express the intersection using the absolute value sign.

Write using the absolute value sign: “The distance between z and —3 is less than 2.”

. Write as an interval: {z : = € R}, i.e., "The set of all 2, where z is a real number.”

. Plot on the number line [0, 3)NN; i.e., “The intersection of |0, 3) with the set of natural

numbers.”

Write as a union of two intervals: {z : |z — 5| > 1}.

Plot on the number line: |x — 1] < 7.

Plot on the number line: |3 — x| > 3.

Solve and write the answer in interval notation: |z + 6| > 5and « < —7.
Solve and write the answer using absolute value: 3 < 2 — z < 10.

Solve and write the answer in set notation: —5 <z + 1 < —6.

Sample Midterm Sample Final
2 A B CD
17 A B C D
22 A B C D 2 A B CD
23 A B C D
34 A B C D
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Math 135 Absolute Value and Interval Notation Solutions

1. Draw the interval (—2, 3] on the number line.

Answer 1.

| | | | s I ) | | |

I I I I I I I I R

6 5 4 3 2 -1 0 1 2 3 4 5 6

2. Arrange from least to greatest: —2, |r|,| — 2|, —| — 1|, 1. Use the symbols “ < ” and
(13 S 77.
Answer 2.
—2<—|-1<1l<|=2|<|n|

3. Simplify to an integer: |3 (|4 —7|-| —1—2|) + 1].

Answer 3.
BUA=T7[-[=1=2)+1 = B(=3[-]=3])+1]
= |3(3-3)+1]
= 39 +1
= 27+ 1|
= [28]
= 28.
4. Rewrite |3 — z| — |z + 1| without using the absolute value sign where:
(@) =z > 3.
Answer 4. If z > 3, then 3 — x is negative and must be negated when the abso-

lute value is removed. The expression x + 1 is positive so remains unchanged.
So, forxz > 3

B-z|—|z+1=-@G-2)—(@+1)=-3+2—2—1=—4.

(b) = = 2.

Answer 5. Substitute and simplify,
3—2[—[241|=[1|-[3|=1-3=-2.

(c) = < —2.

Answer 6. If v < —2, then 3 — z is positive and x — 1 negative. We must negate
the second quantity if the absolute value sign is removed. So, for z < —2

B3—z|—jz+1]=3—-z+(z+1)=4.
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Math 135 Absolute Value and Interval Notation Solutions

5. Write using the absolute value sign the expression representing the distance on the
number line between 2 and —5.

Answer 7. |2 — (—5)|
6. Consider the intervals (—3, 5] and [0, 10].

(a) Draw these intervals on the number line and find their intersection.

Answer 8. The interval (—3, 5] is represented by the region

(e ————————()—————
—6—5—4—3—2—10123456R

The interval [0, 10] is represented by the region

i i i i i H— e ——) ————
~12-10 -8 =6 -4 -2 0 2 4 6 8 10 12 R

The intersection of the intervals (—3, 5] and [0, 10] is given by the intersection
symbol N and we write (—3, 5] N [0, 10].

(b) Express the intersection in interval notation.

Answer 9. (—3,5] N[0, 10] = [0, 5].

(c) Express the intersection in set notation without using the absolute value sign.

Answer 10. {z : 0 <z <5}

(d) Express the intersection using the absolute value sign.

Answer11. {z : |z — 2| <2}

7. Write using the absolute value sign: “The distance between = and —3 is less than 2.”

Answer 12. |z + 3| < 2

8. Write as an interval: {z : x € R}, i.e., “The set of all x, where z is a real number.”

Answer 13. (—o0, 00)
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9.

10.

11.

12.

13.

Plot on the number line [0, 3) N N; i.e., “The intersection of [0, 3) with the set of nat-
ural numbers.”

Answer 14. This is the set {1, 2}. Note that we do not consider 0 as a natural number.

Write as a union of two intervals: {z : |z — 5| > 1}.

Answer 15. Either x+ — 5 > 1, in which case z > 6,orxz —5 < —land z < 4. In
interval notation this is the union

(—00,4] U [6,00) .

Plot on the number line: |z — 1| < 7.

Answer 16.

P ———————)———|
~12-10 -8 —6 —4 -2 0 2 4 6 8 10 12 R

Plot on the number line: |3 — x| > 3.

Answer 17.

O
-12-10 -8 =6 -4 =2 O

e
4 6 8 10 12 R

[\D%%

Solve and write the answer in interval notation: |z + 6| > 5and « < —7.

Answer 18. Either z+6 > 5,in whichcasex > —1,orxz+6 < —5and x < —11. Since
x must be less than or equal than —7, the answer is < —11 or, in interval notation,
(—o0, —11].
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14. Solve and write the answer using absolute value: 3 <2 — z < 10.

Answer 19.

3<2—z2<10 <= 1< —2<8
<— —1>zx>-8.

IV IA

The answer is the interval [—8, —1]. The center is —4.5 and the radius is 3.5, so using
absolute value we write ol 7
{x Dl + —’ < —} .

21 7 2
15. Solve and write the answer in set notation: -5 <z +1 < —6.

Answer 20.
H<z+1< -6 — —o6<r<-T7.

There is no number which is greater than or equal to -6 and less than or equal to -7.
The answer is therefore the empty set, (.
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Math 135 Factoring and Rational Expressions Examples

Rational Expression

By a rational expression we mean an expression that has a numerator and denominator. We
are, at this point, interested in solutions to equations involving rational expressions, that
is all the possible values of x that make the equation a true statement.

Example 1. Solve:
z(2? —4)
(x—1)(z+2)
We begin by factoring into linear factors. Using the difference of squares formula, we
obtain

=0.

r(r—2)(z+2) x(r—2) _0
(z—-1D(x+2) (v—1)
This rational expression is equal to zero provided its numerator is zero. Because, for any
value of z, the numerator is a product of two numbers, we have to consider the possibility
that either one of those numbers can be zero. Our factoring paid off, we have linear factors

and setting each equal to zero amounts to finding the z-intercept of these lines,

r=0and (zr —2)=0 <= z=2.

Hence, the solutions are the numbers x = 0 and x = 2. In set notation, we would denote
the set of solutions as {0, 2}.

For more complicated examples, we may have to do some algebra in order to trans-
form our rational expression into a problem similar to the example above. Once we have
a rational expression set equal to zero, where also the numerator and denominator are
products of linear factors, then we proceed as in the example above. In all other cases, we
must first

1. Introduce a zero by moving all rational expressions to one side of the equal sign.

2. Obtain a common denominator and rewrite the non-zero expression as one rational
expression.

3. Factor the numerator and denominator into linear factors.

The following example illustrates a common error. The first step in the above proce-
dure may not be omitted.

Example 2. Solve:
z(x —2)
(z—1)
We set the linear factors from the numerator equal to 4, and obtain

=4.

r=4and (r —2)=4 <= =6

However, neither + = 4, nor x = 6 are solutions, because substituting either into the
equation does not result in a true statement. With = = 4, we have

44-2) 8
oy 1 870
and using x = 6, we obtain
6(6—2) 24
6-1) 5 70
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Factoring

The second step in the procedure of solving equations involving ration expressions de-
pends on the ability to factor into linear factors. A linear factor is a polynomial of degree
1, or more concretely and expression of the form

(mx +b) .

We can check that a factor is a linear factor by deciding weather it has the above form, or
weather graphing that expression would yield a line. The reason we are after a factoriza-
tion using only linear factors is that these types of (linear) equations are the easiest of all
to solve, as we have seen in Example 1 above.

The process of factoring is a guess-and-check procedure, easily reversible so that we
can check our work at each step.

Example 3. Factor into linear factors the expression 25z* + 30z + 9.
We begin by writing some linear factors,

252% + 302 + 9 = (azx + b)(cx + d) .

We know that ac = 25 and bd = 9, by applying the distributive law or by using the
equivalent FOIL method. At this point we make some guesses, and check to see if they
are correct. We have the factorizations 25 =15-1=5-5,and 9 =9-1 = 3 - 3, and setting
a=c=5and b = d = 3, we have

(52 + 3)(5x +3) = (5x + 3)? = 2522 + 302 +9 .

There are several useful factorization shortcuts, or formulas, that are used so often it
is worth while to commit them to memory;,
Difference of Squares a? — b*> = (a +b)(a — b),
Difference of Cubes  a® — b® = (a — b)(a® + ab + b?),
Sum of Cubes a®+0° = (a+b)(a® — ab+b?),
(a+b)? = (a* + 2ab + b?),
(a+0)% = (a® + 3a*b + 3ab® + b®).
As an exercise, you should be able to check that these are in fact true statements. For
each formula, multiply and simplify on the right hand side to obtain the left hand side.
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Math 135 Factoring and Rational Expressions

Worksheet

You must know the following identities.
(1) Difference of Squares: a* —b*> = (a +b)(a — b)
(2) Difference of Cubes:  a® — b® = (a — b)(a® + ab + b?)

(3) Sum of Cubes: a®+ b = (a+b)(a® — ab+ 1?)
4) (a+b)? = (a* + 2ab + b?)
5) (a+b)® = (a® + 3a®b + 3ab® + b%)

1. Factor into linear factors whenever possible:

(@) 2> +52+6=0

(b) 23 —-322+22 =0
() x(z—3)—22+6=0
(d) 22 +224+1=0

(€) 8% — 27 =0

2. Solve and write the solutions in set notation:

@ =3
b) 2+ 25 =0

©1+—5+-24=0

Sample Midterm | Sample Final
33 A B C D
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Solutions

1. Factor into linear factors whenever possible:
(@) 22 +52x+6=0
Answer 1.
?+5x+6 = 0
(x+3)(x+2) = 0
(b) 23 —-322+22=0
Answer 2.
2’ =31+ 2z = 0
(2 = 3r+2) = 0
r(r—=2)(z—-1) =
() z(z—3)—22+6=0
Answer 3.
r(r—3)—2x+6 = 0
r(r—3)—2(z—-3) = 0
(x—=2)(z—=3) = 0
(d) 22 4+2x+1=0
Answer 4.

22+2r+1 = 0
(04 D)@+1) =

(x+1)°
(e) 82 —27=0
Answer 5.
83 —27 =
(22)* = 3% =

(22 — 3)((27)* + 2z - 3 + 3?)

(22 — 3)(42” + 62 +9) =

o O O O

The expression (42 + 6z + 9) does not factor at all. Later we will develop the

tools that will allow us to see this easily.
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2. Solve and write the solutions in set notation:

@) 57 =3
Answer 6.
Lo 3
r+1
1
-3 =0
r+1
1 r+1
—3. = 0
x+1 r+1
1-3(xz+1) 0
rz+1 B
-3z — 2
—F— =0
r+1
Thus, —5 = 3 provided that —3z — 2 = 0 and x # —1. The solution set is {—2}.
(b) =5+ 357 =0
Answer 7.
-1 2 +1
=0
ac—1+ 2
—1 2+2:c+1 r—1 0
r—1 2 D
24+ 2r+1)(z—-1) 0
2(x — 1) B
24222 -2 -1
= 0
2(x — 1)
222 —x —3
¢ —x _ 0
2(x —1)
2z —3)(x+1) 0
2(z —1)

Thus, % + @ = 0 provided that z = % or z = —1 and = # 1. The solution set
is {—1, 2}.
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@©1+-45+2=0

Answer 8.

N S
r+1 x-—-1

1_(x+1)(m—1)+ 1 .ZL‘—1+ 2 x4l 0

(+1)(z—-1) z+1 z—1 zx—-1 z+1

(+D(z—-1)+(z—-1)+2(x+1)

1+

(x+1)(x—1) =0
?—1l+r—1+20+2 0
(x4 1)(x —1) N

22 + 3w _ 0
(x+1)(x—1)

z(x + 3) _ 0
(x+1)(z—1)

If x = %1, then we are dividing by zero so these numbers, if they are solutions,
are invalid. The numerator and hence the entire expression is 0, whenever
x = 0 or x = —3. The solution set is {—3,0}.
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1. Solve using the key number method and write the solution in interval notation:
(22—3)(7Tz—1) <0
2—x :

Answer 1. The key numbers are the roots of the numerator and the roots of the
denominator. The key numbers are

We always exclude the roots of the denominator, because at these values of = the
denominator is zero, and hence the whole expression is undefined. Depending on
the type of inequality we may also need to exclude the zeros of the numerator. In
this case we have a strict inequality and must exclude both z = % and = = 1.

The key intervals are:

Key Interval || Test Value | (22 —3) | (Tz —1) | (2 —x) %
(—00, 3) 0 - - + +
(3,9) 1 - + + -
(2,2) “ + + + +
(2,00) 10 + + - -

The expression is negative on the intervals (£, ) and (2, c0), and the answer is the
union |3
=, = | U(2 .
(:3) v

2. Solve using the key number method and write the solution in interval notation:
3-20 5 1
2—3x — T’
Answer 2. Before we do anything we need to introduce zero into the inequality. We
know how to solve the previous type of problem so we reduce this problem into the
form we had above.

3—2:17> 1 PN 3—2x+1>0
2-3r - =« 2—-3r x
— 3— 2z x+1 2—3x>
2—-3xz = =z 2-3v
3z — 222 + (2 —
e, 3 x4 ( Sm)zo
z(2 — 3z)
3r — 222 4+ 2 —
- x°+ 31‘20
z(2 — 3x)
—22% 4 2
= ——2>0
(2 —3z) —
—2x 4 2 1
o (e
z(2 — 3x)
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The equivalent problem is to solve

(—2x4+2)(x+ 1)

z(2 — 37) 20
The solution set is {—1,1} and = # 0, —2. The key numbers are z = —2,1, —1,0. We
exclude z = 0 and # = —2, because these are the roots of the denominator and keep
z = —1 and x = 1, because we do not have strict inequality. The key intervals are
Interval | Test Value | (-2x+2) | (x+1) | (x-1) | (-2x-2) | x | (2x-3) || Eq1 || Eq 2
(—o0, —1] -10 + - - + - + + +
[—1,0) -3 + + - - - + - -
X I T D I A AR b R I
3 1
[1,00) 10 - + - + + - + +

The expression in non-negative on the intervals (—oo, —1] and (0, 2) and [1, c0). The
answer is their union, namely

(=00, —1] U (o, g) UL, 00) .
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You must know the following identities.
(1) Difference of Squares: a* —b*> = (a +b)(a — b)
(2) Difference of Cubes:  a® — b® = (a — b)(a® + ab + b?)

(3) Sum of Cubes: a®+ b = (a+b)(a® — ab+ 1?)
4) (a+b)? = (a* + 2ab + b?)
5) (a+b)® = (a® + 3a®b + 3ab® + b%)

Solve using the key number method and write the solution in interval notation.
1L 2°+42+4<0

(x—=3)(z+1)Bz—-1)>0

—z(x—2) <1

22—1
r247r+12 = 0

AR N T

o
8

> 6

;g =1
4
+i

Sample Midterm Sample Final
26 AB CD | 25 A B CD
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Solve using the key number method and write the solution in interval notation:
1. 22 +4x+4<0

Answer 1. Factoring we have
P +dr+4<0 <= (z+2)(z+2)<0.

There is no denominator and hence no values at which the expression is undefined.
The key value is the one root of the numerator, © = —2. Note that the strictly less
than inequality does not allow us to include z = —2. The key intervals are
Key Interval || Test Value | (x+2) | (x+2) || (x+2)(x+2)
(—o0, —2) -5 - - +
(—2,00) 0 + + +
Since the expression is nowhere negative the solution is the emptyset, {.

2. (z=3)z+1)Bx—-1)>0

Answer 2. The expression is already factored and there is no denominator to worry

about. The three key values are 2 = 3, —1, 3, and produce these four key intervals.

Key Interval || Test Value | (x-3) | (x+1) | (3x-1) || (x-3)(x+1)(3x-1)
(—o0, —1] -5 - - - -
[—1, 3] 0 - + - +
3, 3] 1 - + + -
(3, 00) 10 + + + +

We have two intervals for which the expression in non-negative and the answer is
the union [—1, ] U [3, 00).
3. —z(x—2)<1

Answer 3. We first need to introduce zero into the inequality.

—z(z—2) < 1
x(r—2) > -1
rlx—2)+1 > 0
2> —2r+1 > 0
(x—1)(zx—1) > 0

The key number is z = 1 and as before we have two key intervals
Key Interval || Test Value | (x-1) | (x-1) || (x-1)(x-1)
(—o0, 1] 0 - - +
1, 00) 10 + + +
Since the expression is always non-negative the solution is the entire real line. In
interval notation, we would write (—o0, 00).

University of Hawai‘i at Manoa 36 ® Spring - 2014



Math 135 Key Number Method Solutions

z2—1
4. 24+ Tx+12 > 0

Answer 4. To find the key values we factor the expression

-1 (z+1)(z—-1)
2+ 7r+12  (v+4)(z+3)

>0.

The key numbers are x = £1, —4, —3. We have a denominator to worry about now
and this produces additional intervals. Note the use of ( )'s around the key values
which come from the denominator: the roots of the denominator cannot be included
in the key intervals.

Key Interval || Test Value | (x-1) | (x+1) | (x+3) | (x+4) %
(—o0, —4) -5 - - - - +
R A T R I B N
(=3, —1] -2 - - + + +
[—1,1] 0 - + + + -
1, 00) 10 + + + + +

The intevals corresponding to non-negative values of the expression are (—oo, —4]
and (—3, —1] and [1, co). Note that the zeros of the numerator are included since our
expression only needs to be non-negative. The answer is the union

(—o0, —4) U (=3, —1] U [1,00)

5. 2. <1

Answer 5. Introduce a zero into the inequality and factor:

xil s 1
T
x—l_l =0
T T —
:17—1_1':16;1 =0
r—1 = 0

The key value is = 1 and we have
Key Interval | Test Value | (x-1) (xil)
(—o0,1) -1 - -
(1,00) 10 + +
The expression is negative on the interval (—oo, 1), and that is the answer.
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Solutions

6. T4+ - >6
Answer 6.
>
T+ P
-6 >
T+ 9 =
x—2 n 4 6 x—2 S
:I/’ . —_ .
r—2 x-—2 r—2 =
z(r—2)+4—6(x—2) S
T —2 -
2? —2x +4 — 6x + 12 S
T —2 -
2 _
r° — 8x + 16 S
T —2 -
(z -4z -4
T —2 -
The key number is = = 2, 4. The key intervals are
Key Interval | Test Value | (x-2) | (x-4) | (x-4) %

(.2) o - [ - - -

(2,4] 3 + - - +

[4, 00) 5 + + + +

The expression is non-negative on the intervals (2, 4] and [4, c0), and the union is the

answer, namely
(2,4] U [4,00) = (2,50)
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Examples

Rules for working with exponents. Let z, a, b be any real numbers. Then:

1.

2 =12#0
Example 1. 5z =1, (2*)" =1
% . SCb — xa-l—b

Example 2. 3°-3 =3 =303 03 =00 =16 - a> =a "2 =¢73

Common mistake: a* - b* # (a +)*,23-32 £ 1

Example3. 3 =372 =371, & = 6> = 6!

. 2 T
Common mistake: 55 # 1, 2 £

a*I
(xa)b — :L,a-b

Example 4. (5%)? =522 =5 (L) = 35 =%

w
—
—
—
o
_
S~—
&
l
EN |
w

Common mistake: (23)? # 2°
(5) =1y #0
Example 5. (3)? = 3;
Common mistake: (3)° # 2
et=1 240

Example 6. ;1

I
—~
S =
S~—

L

I
=
—~
uleo
S~—

L

|
wlon

[
w

L

I

|

Common mistake: (—5)~! # 5, =% # 1

(zy)* =2’y
Example 7. (2-3)2=22-32=4-9=36 =6

Common mistake: (3-4)"! # (3 —4)

Whenever you are asked to simplify an expression with integer exponents the final
form should contain no negative exponents. As always, reduce fractions to lowest terms.

Example 8.
3Z$3y4 B 32171x3y475 B 320x3y71 B :L,B
6zyd 6 6 2y
Example 9.
2R+ F\ 0 2%fh N\ (23fh)P 203
23fh C\2R2+ ) (2R2H+ )P (2R2+ f)3
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Math 135

Integer Exponents

Worksheet

Recall the rules for working with exponents. Let z, a, b be any real numbers. Then:

1.2%=1,2#0

2. 2% gb = got?

3. L=a""ax#0

4. (%) = 22

5. (2) =2y 0

6. v 1=1a2#£0

7. (ay) =2ty

Simplify:

1. 2y

2. (%)

. g,

i

5. (Gt

6. (vyz + zyr + yxz)!

7. S e (it

8. ()

0. Ko i (o)’
10. 4234?47 [Hint: Single digit]
11. (5%) - (25%)""

)? [Hint: Single digit]

Explain why the expression 0° is undefined.
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Simplify:

1 3zadyt
t 622y

Answer 1. 5 4
3zx”y” 3 4, 3471:171 3,3 _ LY

3
22fh2
2 (%)
Answer 2.

3 3
22fh2 — (22fh2) — 26f3h6 — 26_9f3_3h6_3 — 2_3f0h3 — h_3
23 fh (23fn)>  29f3R3 8

3zax3yt
" (622y) 77

Answer 3.

3zady? - 9 \2 3 A\ (02 4 2 4 3 442 a6
(622y)_2:(32xy)(6z y) 2(3213@)(62‘?;):3-362 x2y "7 = 10822y

(3zx3y4)y

+ S
Answer 4.

(3Z$3y4)y _ 3yzyx3yy4y _ 3y2y72xl,3yy4yf:p _ 3y7:pzy72mx3yy4yfx
(622y)" 6@ z20q® (2-3)" 2z

5 22fh2+f -3
: 23 fh+2

Answer 5.
2fh 4+ f\T° (2fh+2\°
23fh +2 O\ 22fh2 4 f
6. (xyz + zyx + yxz)*

Answer 6.

xyz +zyr +yxrz) = (dxyz) =3 x Yy 2z =3lx 'y z
y y y 4 3y 4 34 4y44 81 4y44
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7. Szt settit (200 ) [Hin: Single digit

62%y (622y) > 23 fh+2
Answer 7.
3zadyt . 3zadyt — 3zay* . (22fh2+f)3_ 3zadyt . 0 . (22fh2+f)3_0
622y (622y)~° 23 fh + 2 622y (622y)> \ 23fh+2
8. ()"
Answer 8.

9 3zadyt . 3zady?t . 22fh24f 3
t 622y (622y) "7 23 fh+2

Answer 9.
3zadyt . 3zadyt . 2fh2 4 f\° B (3za3y4)? . 2fh% + f\°
622y (622y) " \ 2°fh+2 (622y)""  \ 2°fh+2

220+ £
= (3=%")" (6%) - ( 23];% - 2f )

22fh% + f\°
. Q.(.2+2,6, 841
= 967y (23fh+2)

22fh2 + f\°
— 4469'
24z x y (—23fh—|—2>

10. =4 [Hint: Single digit]

47

Answer 10. .
427 47 48—47_47(4—1)
47 47 YT

11. (5%) - (252) 7"

Answer 11.

Explain why the expression 0° is undefined.

Answer 12. Let a # 0 and write:

00 = gla—a) — g _9

S0t 0
We are secretly dividing by zero, which is never allowed and is the reason why 0 is
undefined.
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Rules for working with rational exponents. Let z, a, b be any real numbers and let m,n
be any integers but not zero, i.e., m and n are of theset {...,—3,—-2,-1,1,2,3...}.

1. Rule:
rn = (Vx)" = Jam
Example 1.

642 = 643 = v/262144 = 512

However, this is much easier to do using the other expression as follows (especially
if you don’t have a calculator around):

642 = (V64)? = 8% = 512

Note also that there is another way to handle a situation like this and avoid “big”
numbers using the methods of the last lecture:

2. Rule: Recall that 7" = - = (1)" so

Example 2.

25, s 4 .s 1\’ N AN
e 22(%”:( %) :(72—5) :(5> =5 3125

Note however that this is a lot of steps. Students would be expected to answer more

like this:
0 5
RN N Y ER N CANE -
47 257 o \V25) \5) 3125
3. Recall that (ab)" = a"b" and (z")™ = 2™™. We use these when simplifying expres-
sions like

(642°)7 = 643 (2%)3 = (V64)%2"F = 422 = 162
4. Simplifying rational expressions works just as before. Recall also from last time that
whenever you are asked to simplify an expression with integer exponents the final
form should contain no negative exponents. As always reduce fractions to lowest
terms. In addition, square roots should contain no perfect squares, cube roots no
perfect cubes, etc.

2
3

6z%y_

/320590 = /23 - 2203 - 22(y3)3 = 229>V 2202 = 2093V 4a?
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Math 135 Rational Exponents Worksheet

Evaluate or simplify each expression. You should have no negative exponents in any
answers.

1. 6251
645
645
493

497

® N S g ok w DN

\O
—~
|
0]
~—
|
wlot

10. (224 1)3(z2+1)3

' Gz%yfgx%
" (222 +1)75 (222 + 1)5 (22 + 1) 5
' (22 +1)3

Sample Midterm | Sample Final
21 AB C D
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Math 135

Rational Exponents

Solutions

Evaluate or simplify each expression. You should have no negative exponents in any
answers.

1.

University of Hawai‘i at Manoa

6251

Answer 1.

643

Answer 2.

64-3

Answer 3.

493

Answer 4.

. 4973

Answer 5.

0.0015

Answer 6.

0.0013

Answer 7.

45
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Math 135 Rational Exponents Solutions

8. (—8)3
Answer 8. .
(=8)8 = ((-2)*)° = (-2)° = —32
9. (—8)73
Answer 9. ] 1 1
(-8)7F = ((-8)3) = (=397 =

10. (224 1)3 (22 +1)3
Answer 10.

(B 4+ 152+ 1) = (22 + 1)its = @2+ 1)5 = (@2 + 1)2 =2 + 227 + 1

11. 221%55?%1
625y_§ 3
Answer 11. s 1 s
62212&:341/31 — %zg—éﬁ—éyiﬁé — lzlxoy?’ = 1zy3
ZQy_§x§
o 22+ 1)75(222 + 1)5 (22 + 1) "5
' (22 +1)3
Answer 12.
2 _6 2 6 2 _1
(22°+1) 52292” +1)125(”7 U™ g2 1) (e 4 1) b
e+ 1)
= 222+ 1)+ 1) 5
— (1’2—%1)72
B 1
o (224 1)2
B 1
ot 420241
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Math 135 Rationalizing the Denominator Examples

Remember these important identities! For all real numbers a, b:
Difference of Squares: a? — b* = (a + b)(a — b)
Difference of Cubes:  a® — b = (a — b)(a® + ab + b?)
Sum of Cubes: a®+ b = (a+b)(a® — ab + V?)
(a+0)* = (a* + 2ab + b?)
(a+b)? = (a® + 3a®b + 3ab® + b%)

WARNING! Avoid the "Freshman’s Dream”
Remember to multiply all the factors in expressions such as (4) and (5) above. In general:

(a+0)" #a"+ 0"

We will be using the difference of squares extensively. For example, how would you
simplify the following expression so that the denominator no longer contains a square
root?

)
T+ Vx
The key idea is to realize that (7 + /z)(7 — v/x) = 49 — z, i.e. we have a difference of

squares. Then if we multiply our equation by 1 = % we are not changing the equation,

but the denominator will no longer have a radical.

5 T—Vr  5(T—\x) 35—5\x
T+ T—Vr 49—z = 49-—x

Remember that a and b in the difference of squares expression are parameters. This means
that we can replace a and b with pretty much any expression we wish. Consider the
following example. We are still using the difference of squares.

—(z—-2?  —(z-2) '<2\/m+x)
Wr—1—z  2Wr—1—-2 \XVr—1+4=z

—(z—2)%- 2V —1+1)

©)

4(x —1) — a2 (19)
(=22 2V —1+42)
B a2 —dz +4 )
_ (- 2)%- (2vx —1+2) (12)
(r —2)?

_ or T4 (13)

In the above examples both the pairs 7 — /= and 7 + \/z and the pairs 2y/z — 1 — = and
2v/x — 1 + x are called conjugates. In the difference of squares formula (a + b) is the con-
jugate of (a — b). So conjugation amounts to switching the sign in the given expression.
The process of multiplying an expression whose denominator contains a radical by 1 in
the form of a fraction with the numerator and denominator both being conjugates of the
expression’s denominator is called rationalizing the denominator.
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Math 135 Rationalizing the Denominator Examples

Example 1. Rationalize the Denominator.

V3 V3 \V3) V3-v3 3

Example 2. Rationalize the denominator.

V2 VI (VA VEVE VBB 22T VD
va o1 \va) 4 4 4 T2

Example 3. Find the conjugate of /2% — § — 2 + .

w/x2—g—2—x.

Example 4. Rationalize the denominator.

3x+4 B 3z +4 2\ /r* =5 +2—x (14)
2\ /1?2 — 5 -2+ 2 2 -5 -2+ \2\/2*—-5+2—x
. Br+4)(2y/2? -5 -2—1) (15)
4(2? — § +2) — 22
B +4)(2y/2? -5 -2—1) (16)
B 322 — 2z + 8
3r+4)(2 /2?2 — % —2—
 Grrye/F-3-2-a) W)
(Bx +4)(x —2)
_ 222 - -2—u 18
= " (18)
(19)
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Math 135 Rationalizing the Denominator Worksheet

Rationalize the denominator:

V2
1. 73
V2
2. =/
1+v/3
3 -
a—!—\/g
4. "y
1
5. 7 + 4+/45
4
6 7
3
7. e
8 3
© V275!
9 \/5—5-\/i
ViR
VE-2i
10. V27
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Math 135 Rationalizing the Denominator Solutions

Rationalize the denominator:

1. 2
Answer 1.
V3_ 3 (VB)_VAVE_ VG
V3 V3 \v3) 3 3
2. 2

Answer 2. /s /s /s /s
2 2 1+v2 242
1—\/5:1—\/§'<1+\/§) =g - V22

(O8]
==
|+
Sl

Answer 3.
1+v3  1+v3 [1+V3) 4+2V3 V3
1-v3 1-v3 \1+V3 1-3

W
Q|2
||+
SIS

Answer 4.
a+\/5_ a+ Vb <a+\/5) _a2+2a\/5+b

a—+vb a—+b a+b Bl a?—=b
5. 75 +4V45
Answer 5.
%+4\/4_5:%+4.3\/5:%+i'55=%:%3
6. 5
Answer 6.
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Math 135 Rationalizing the Denominator Solutions
3
7. 35
Answer 7.
3 _ 3 (WY _sVF
V3 V3 V3 3
8. ——3
" V27d5b11
Answer 8.

3
33 V270 34/(27a%bM )
Vorasbt V27450t \ Votaibtt ] 27adbl
3*4/39a15b33
- 3305p11
33a3b3v/3a3b
- 3305pLL
v/3a3b
- a?bd
9 VI+V2
Vi—/2
Answer 9.
VIEEV2Z VT V2 (Ve V2 2v20 42
VI=V2  r—V2 \Vr+V2 T —2
VE-2,/7
10. o2
Answer 10.
VI VT2 (\/‘—2\/@) _r—4Ty+dy
VI+2y VT +2y \Vr—2/y x — 4y
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Math 135 Circles and Completing the Square Examples

A perfect square is a number a such that a = b* for some real number b. Some examples
of perfect squares are 4 = 22,16 = 42,169 = 13%. We wish to have a method for finding b
when a is an expression. For instance, you should remember that a* + 2ab + b? is a perfect
square, because it is exactly (a + b)?. How would you turn the expression z? + az into a
perfect square?

A moment of thought should convince you that if we add (%)* to 2% 4+ az we obtain a
perfect square, because (z + £)* = % 4 ax + (%)*. The addition of ($)? is called completing
the square, because the new expression can now be written as a square of some other
expression.

Example 1. Complete the square: 2 + 4z =0

P44 =0 = (®°+4r+4)=4 < (z+2)°=4

We have added the square of half the coefficient of « to the original equation, and therefore
to maintain equality it was necessary to add the same amount to the other side of the
equation.

Warning 2. The coefficient of 2? must be equal to 1 in order to complete the square.

Example 3. Complete the square: 22 + 8z = (

202 + 81 =0 <= 2(2%+42) =0 < 22’ +42+4) =8 < 2(z+2)*=8

We added 4, the square of half the coefficient of z, inside the parentheses. Note that
this amounts to adding 8 to the left side of the equation, because everything inside the
parentheses is multiplied by 2. Therefore, to maintain equality we add 8 to the right
side of the equation. In case we cannot set our expression equal to 0, we must subtract
whatever number we add to the expression:

Example 4. Complete the square: 22 + 8z

20 + 8z = 2(2® + 4x) = 2(2* + 4x +4) -8 =2(x +2)* — 8

Example 5. (z — h)* + (y — k)? = r? is the equation of a circle of radius r centered at the
point (h, k). Using the method of completing the square (twice) find the radius and center
of the circle given by the equation z* + y* + 8z — 6y + 21 = 0.

P4y 48 —6y+21 = 0 (1)

(%4 8z) + (y* — 6y) = —21 2)

(2> +8r+16)+ (¥ =6y +9) = —21+16+9 (3)
(z+4)?2+(@y—-3)? = 4 4)

We have now the form (z — (—4))?+ (y — 3)? = 22 which is a circle of radius r = 2 centered
at the point (h, k) = (—4, 3).
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Math 135 Circles and Completing the Square Examples

Deriving the Quadratic Formula Given a quadratic equation, i.e. an equation of this
form:
ar® +br +c=0,a#0 (5)

where a, b, and c are real numbers, we wish to have a formula that will give us the
explicit values of = for which the quadratic equation is zero. That is, we need a formula
that produces x; and x5 such that

az? 4+ bry +c=0and axj + bry +c =0 (6)

The quadratic formula tells us exactly how to find our set of solutions {z;, 2>}, but it also
tells how large this set is. We can have two distinct solutions and this happens whenever
the discriminant is a positive number. We can have just one solution if the discriminant is
zero. In this case we say that the root z1(= x2) has multiplicity 2, because it occurs twice.
Finally, when the discriminant is a negative number, we have a square root of a negative
number and hence no (real) solutions. Recall the quadratic formula:

—b+Vb?—4
x = 5 %€ Where the discriminant is equal to b* — 4ac (7)
a

How do we know that this is indeed correct? We can apply the method of completing the
square to our quadratic equation (1) and verify that equation (2) is correct. Here are the
details:

ar’* +br+c = 0 (8)
b
P4zt =0 9)
a a
b
2t or = —= (10)
a a
2 2
b b b c
74— a1 = (&) —- 11
b () - (1) "
b\’ b\’ ¢
24— —] = (=) —- 12
v +ax+(2a) (2@) a 12)
b\’ o oc
(“z) = 1@ G (13)
b2 b? c 4a
(“%) AT 14
b\? b  dac
(“5) S w1 (15)
b2 b? — dac
(JJ—F%) = —46L2 (16)
b b2 — 4ac
rho- = B (17)
b +V0% — 4
el o B e )
2a vda?
b +V0? — 4
T+ = =V e (19)
a 2a
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Math 135 Circles and Completing the Square Examples

b ++v/b2 — 4ac

r = ——+ — (20)
2a 2a
—b+Vb? — 4dac
xr = 90 (21)

So which of the above steps do we call “completing the square”? The answer is (4) to
(7); the rest deal with writing the equation in the form x = something. Let’s review:

Suppose you are given your favorite quadratic az? + bz + ¢ and need to solve for z.
You are no longer amused by factoring and decide to complete the square instead.
Step 1: Check the coefficients. If a = 0 you don’t need to complete the square. If a # 1
then you need to factor out a. So suppose that a # 1 and a # 0.

b
ax2+ba:—|—c:a{m2+—x+£} (22)
a a

Step 2: Group the z terms together. You complete the square only on the terms containing
the variable z. Notice that inside the brackets [ | we now have a new quadratic equation
with coefficients a = 1,b = 2 and ¢ = <.

b
ax2+bx+c:a{($2+ax>+§] (23)

Step 3: Complete the square: add the square of half of the coefficient of x to the terms in

side the parentheses ( ).
, b b\ ¢
rr+-r+ | — + =
a 2a a

Step 4: Up until now we have not altered the equation, but adding something to the right

side requires subtracting the same number. We have added % inside the brackets [ | and
everything inside [ | is multiplies by a. Therefore, to keep the equation unchanged, we

now subtract from the right side the number a - % and obtain

, b b\’ ¢
rr+-r+ | — + =
a 2a a

Step 5: Simplify. The term in the parentheses ( ) is a perfect square and so

b\ | ¥ b\* b —dac
— | -—= — | - 2
(x * Za) * a] 40 ° (w * 2a> 4a (26)

This form should look familiar. If we were to set line (22) equal to zero we would have
the standard quadratic equation. Then dividing by a (legal since a # 0) and moving terms
around returns us to equation (12).

ar’ +br+c=a (24)

ar’+br+c=a
4a

ar’ +br+c=a
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Math 135 Circles and Completing the Square Examples

Viete’s Equations, or how to pick out the correct pair of solutions to a quadratic equa-
tion ...

Proposition 6. Given a quadratic equation with real coefficients a, b, c
ar’ +br+c=0,a#0

If the solutions exist, then they have the following form

—b+/b? — 4ac
3’/‘ =
! 2a
—b —/b? — 4dac
To =
2a

and they obey the following algebraic equations:

Ty + Ty = —
a
c
Tl To = —
a

If you are given a quadratic equation to solve and are allowed to use the quadratic
formula, then you may follow these steps and save yourself some work.

Step 1: Make sure that the solutions exist, i.e. b2 —4dac >0

Step 2: Look at the quadratic equation you have to solve and determine the values
of a, b, c and compute %b and <.

Step 3: Compute x4+, and z; -z, for each set of solutions your are given as a choice.

Step 4: Compare the results of steps 2 and 3. If you find a match, you have found the
solution. If there is no match, then none of the possible choices is a solution. (Is it possible
to have more than one set of matching solutions?)
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Circles and Completing the Square Worksheet

Math 135

Using the method of completing the square, put each circle into the form

(@ =)+ (g = K =1°

Then determine the center and radius of each circle.

0.

1. 22 +y? — 10z + 2y + 17

2. 22+ 1> 4+ 8z — 6y + 16 = 0.

3. 922 + b4z + 9y? — 18y + 64 = 0.

4. 42? — 4z + 4y* — 59 = 0.

=
(e
H
Q
Q.
g
(g0}
wn
jajajalaYayaga
-
mCCCCCCC
.MBBBBBBB
)]
WAAAAAAA
nw — O\ — Al LD

3

RV —= AN OO H
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Math 135 Circles and Completing the Square Solutions

Using the method of completing the square, put each circle into the form

(o= Y+ (y — k) =7

Then determine the center and radius of each circle.
1. 22+ 9% — 102 +2y + 17 = 0.

Answer 1.

2+ — 100 +2y+17 = 0
(z* —10z) + (y* +2y) = —17
(2 =102 +25)+ (y* +2y+1) = —17+25+1
(=57 +(@y+1)? = 3

Circle of radius r = 3 centered at (5, —1).
2. 22+ y? +8x — 6y + 16 = 0.
Answer 2.

4y 4+8—6y+16 = 0
(z° +87) + (y* —6y) = —16
(22 +8x+16)+ (> —6y+9) = —16+16+9
(x+4)°*+(y—3)? = 3

Circle of radius r = 3 centered at (—4, 3).

3. 922 + 54z + 9y? — 18y + 64 = 0.

Answer 3.

92% + 54 + 9y — 18y +64 = 0

(927 + 54x) + (9y* — 18y) = —64
9(x® +6x) +9(y* —2y) = —64
9Ya? +6x+9)+9(* —2y+1) = —64+81+9

9z +3)*+9y—1)* = 26

(z+3)°+(y—1)7° = (@)

Circle of radius r = @ centered at (-3, 1).
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Math 135

Circles and Completing the Square

Solutions

4. 42° — 4o + 49* — 59 = 0.

Answer 4.

4% — Az + 4y* — 59
(4:1:‘2 —4z) + (4y2)
Aa® — x) + 4(y%)

4a® — x5+ A?)

4
Ao~ 3P +4G)
(o= 3P+ ()

Circle of radius v/15 centered at (3, 0).

University of Hawai‘i at Manoa 58

99
99

59 +1

60

15

® Spring - 2014



Math 135 Functions: Domain and Range Worksheet

1. Compute:
@) f(z)=2x+1, f(2z) =
b) flz)=22—1,f(z+1)=
(©) f(l’)=7x—|—11 F(f(x) —9) =
(d) f(x) = 1:17 ():
(€) f(z) =2z +4, {EHNT@

2. Determine if the following are functions.

(@) y=4
(b) {(_27 O)v (3’ 5)7 (_27 4)7 (17 5)}

(c) The relation which assigns to each person the month and day of their birthday.
(d)
2?, —3<x<0;
Y= z, O<ax <2
2, 2<ax<b5.

3. Find the domain and range of the following functions. Write the answer in interval
notation.

(a) y =2
(b) {(_170)7 (3’ 1)7 (07 _1)7 (17 _1)7 (27 \/§)> (47 1)}

(c) The relation which assign to each person the first letter of their last name.

(d)
0, -3<5z<0;
g(x) = r, O0<z<2;

x2, 2< 1 <b.

Sample Midterm | Sample Final
5 A B CD
7 A B C D
12 A B C D
13 A B C D
16 A B C D
3. AB C D
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Math 135 Functions: Domain and Range Solutions

1. Compute:
(@) f(x) =22 +1, f(2z) =
Answer 1.

f(2x) =22x)+1=4x+1
(b) flz)=2" -1 f(z+1) =

Answer 2.

fz+)=(@+1)° -1l=2*+22+1-1=0*+22 =2(xr +2)

(© flz)=Te+11, f(f(x) = 9) =

Answer 3.

f(flx)=9) = 7(f(z) =9)+11
= 7(Te+11-9)+11
= T(Tx+2)+11
= 49z + 14+ 11
= 49z + 25

d) fx) = ;5. /(5) =

Answer 4.

_ flath)—f(z) _
() f(z) =2z +4, == =

Answer 5.
fla+h)—f(x) 2@+h)+4—-(2x+4) 220+2h+4—-20—-4 2h_2
h - h - h T h

2. Determine if the following are functions.

@ y=4
Answer 6. Yes, this is a horizontal line and passes the vertical line test.

(b) {<_2’ O)’ (37 5)? (_27 4)7 (17 5)}
Answer 7. No, because for x = —2 we have two different values.

(c) The relation which assigns to each person the month and day of their birthday.

Answer 8. Yes, each person has one birthday.

(d)
2?2, —3<z<0;
Y= x, O<xr <2
22, 2<z<Hh.

Answer 9. No, at = 2 there are two different possible values: 2 and 23 = 8.
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Math 135 Functions: Domain and Range Solutions

3. Find the domain and range of the following functions.

() y=2
Answer 10.
Domain: (—o0, 00)
Range: {2}

(b) {<_1’ O)’ (37 1)? (07 _1)7 (17 _1)7 (27 \/§)> (47 1)}
Answer 11.
Domain: {—1,0,1,2,3,4}
Range: {—1,0,1,v/2}

(c) The relation which assign to each person the first letter of their last name.

Answer 12.
Domain: The set of all people.
Range: The alphabet.

(d)
0, -3<x<Q0
g(z) = r, 0O0<z<2;
x2, 2<x <o

Answer 13.
Domain: [—3,0] U (0,2) U [2,5) = [-3, 5]
Range: {0} U (0,2) U [4,25) =[0,2) U [4,25)
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Math 135 Functions: Examples Worksheet

1. The constant function: f(z) =¢,c € R.

Domain (—00,0)
Range {c}
Intervals of Increase
Intervals of Decrease none
Turning Points none

Local Maxima
Local Minima

Global Maxima T =
Global Minima T =
Symmetry

2. The linear function: f(z) = ax + b;a,b € R.

Domain (—o0
Range { {b} Z y 8’
Intervals of Increase none as0;
a > 0.
Intervals of Decrease }
Turning Points none

a =
none, a # 0;
a =

Local Minima
Global Maxima

Local Maxima } none a#0;
Global Minima {

Symmetry
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Math 135 Functions: Examples Worksheet

3. The square function: f(z) = z?.

Domain (—00, 00)
Range
Intervals of Increase [0, 00)
Intervals of Decrease | (—o0, 0]
Turning Points x=0
Local Maxima none
Local Minima x=0
Global Maxima none
Global Minima r=0
Symmetry

4. The cube function: f(z) = z3.

Domain
Range
Intervals of Increase || (—o0, o0)
Intervals of Decrease none
Turning Points none

Local Maxima
Local Minima
Global Maxima
Global Minima
Symmetry

University of Hawai‘i at Manoa 63 ® Spring - 2014



Math 135 Functions: Examples Worksheet

5. The inverse function: f(z) = —.

Domain
Range
Intervals of Increase none
Intervals of Decrease || (—o0,0) U (0, c0)
Turning Points none
Local Maxima none
Local Minima none
Global Maxima none
Global Minima none
Symmetry

6. The inverse square function: f(z) = %.

xT

Domain (—00,0) U (0, 00)
Range
Intervals of Increase
Intervals of Decrease

Turning Points none
Local Maxima none
Local Minima none
Global Maxima none
Global Minima none
Symmetry
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Math 135 Functions: Examples Worksheet

7. The square root function: f(z) = /.

Domain 0, c0)
Range 0, 00)
Intervals of Increase
Intervals of Decrease
Turning Points none
Local Maxima
Local Minima
Global Maxima
Global Minima
Symmetry

8. The cube root function: f(x) = /.

Domain
Range
Intervals of Increase
Intervals of Decrease | none

Turning Points none
Local Maxima none
Local Minima none
Global Maxima none
Global Minima none
Symmetry
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Math 135

Functions: Examples

Worksheet

9. The absolute value function: f(z) = |z|.

University of Hawai‘i at Manoa

Domain
Range
Intervals of Increase || [0, o)
Intervals of Decrease || (—o0, 0]
Turning Points T =
Local Maxima none
Local Minima
Global Maxima none
Global Minima
Symmetry
Sample Midterm
15 A B CD
20 A B C D
24 A B C D
25 A B C D

66

Sample Final
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Solutions

Functions: Examples
c,c € R.

{c}
none
none
none

C, T =2¢C
c,Tr=c
c,Tr=c
c, T =c
y-axis

(—OO, OO)

Domain
Range
Intervals of Increase
Intervals of Decrease
Turning Points
Local Maxima
Local Minima
Global Maxima
Global Minima
Symmetry

1. The constant function: f(x)

Math 135

<t
i
o
Q I
)
I &0
=
-
N H
= ©
| | | | | | | |
-t -—---== t-— -4 --==-== 4= =-- ——-—==-= —————== F----=-- + -
I I I I I I I I
I I I I I I I I
I I I I I I I I
| | | | | | | |
| | | | | | | |
| | | | | | | |
- e e ——, - - - = - - = o - [a-
| | | | | | | |
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
. i e I [ Lo [
| | | | | | | |
| | | | | | | |
| | N | | | | |
| | Q| | | | | |
I I — I I I I I
| | NI | | | | |
L F\\\'\L \\\\\\ e [ [ [ L
I I
I I
I I
| |
| |
| |
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axr + b;a,b € R.
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3. The square function: f(z) = z?.
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4. The cube function: f(z) = z°.
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5. The inverse function: f(z) = 1.
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1
x2°

6. The inverse square function: f(z) =

® Spring - 2014
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7. The square root function: f(z) = /.
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8. The cube root function: f(x) = /x.

“ffrrpres
g9 9888888
P00 cEcaddf
5 2
© ©
eesaa (¢}
S5CEEEEE
E 0 5R0TEREE
.mg“DPa.lame
EESE w222k
o kbs.llll.n'.a
DRmﬂammmme
rwuoololS
w.wTLLGG
S g
[

® Spring - 2014

74

University of Hawai‘i at Manoa



Solutions

Functions: Examples

Math 135

9. The absolute value function: f(z) = |z|.
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Math 135 Linear Functions Examples

We are already familiar with linear functions from our work in the first week on lines.
Linear functions are simply functions of the form f(xz) = ax + b where a and b are real
numbers, not both zero. Note that if a« = 0, then we have f(z) = b, which graphs as the
the horizontal line y = b. The only lines that are not functions are the vertical lines, z = ¢,
c any real number, as they (dramatically) fail the vertical line test.

As these functions are the most simple and we have worked on lines already, we will
work on word problems instead of examining them directly. The following examples
should be enough to show you how to solve the problems on your worksheet.

1. Let z denote a temperature on the Celsius scale, and let y denote the corresponding
temperature on the Fahrenheit scale.

(a) Find a linear function relating x and y; use the facts that 32°F corresponds to
0°C and 212°F corresponds to 100°C'.

As this is a linear function, we know it must have the form f(z) = ax + b. We
simply need to find a« and b. However, a is just the slope and we have a formula
for that given two points on the graph of the function (as the graph is a straight
line). The two points given are (0, 32) and (100, 212). The slope is given by,

Ye—wyr 212-32 180 9

T —z 100—0 100 5°

So the function is of the form f(z) = 2z + b. To find b we need only input one
of the points,

9
32:5(0)+b — b=32.

We now believe that the answer if f(z) = 22 + 32, but we must input the other
point to verify this. We have

9
f(100) = £(100) +32 = 180 + 32 = 212,

SO our answer is correct.

(b) What Celsius temperature corresponds to 98.6° "7
This amounts to solving the equation f(z) = 98.6.

98.6 = gaz + 32
9
66.6 = g:)j
5(66.6) = 9z
333 =9z
333
=20 gy
T= :

and we conclude that 37°C is the equivalent of 98.6°F'.
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(c) Find a number =z for which z°F = 2°C.
This amounts to solving the equation z = f(z). We have,

9
z:gz—|—32
32 4
J— = —Z
5
—160 = 4z
z=—40.

2. (a) A biologist measured the population of a colony of fruit flies over a period of 39
days. After 12 days there were 105. After 18 days there were 225. Find the linear
function whose graph passes through the two points given in the table. We compute

the slope,
Y2 — %1
a =
To — I
225105
18 —12
120
=— =20
6 )

and the y-intercept,

105 = 20(12) + b
105 = 240 + b
b=—135.

So the linear function is f(z) = 20x — 135, and we check our work,

£(18) = 20(18) — 135 = 360 — 135 = 225.

(b) Find the population after 20 and 39 days.

£(20) = 20(20) — 135 = 400 — 135 = 265,
f(39) =20(39) — 135 = 780 — 135 = 655.
This information was taken from an actual experiment and the true result after 39

days was actually 938. Linear functions are actually not very helpful in predicting
real world solutions. However, they make a good starting point for us.

(c) Assuming our linear function actually gave good predictions of the actual fruit
fly population, when would the population reach 1000?

This amounts to solving the equation 1000 = f(z), and we have

1000 = 20z — 135
20z = 1135
x = 56.75 .

The population would reach 1000 in about 57 days.
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Find the linear functions satisfying the given conditions:

f(3)=2and f(—3) = —4.
f(0) =0and f(1) = V2.
9

2) = 1 and the graph of g is parallel to the line 6z — 3y = 2.

2.
3. 9(2)
4. g(2) = 1 and the graph of g is perpendicular to the line 6z — 3y = 2.
5. The x and y-intercepts of f are 5 and —1, respectively.

6

. During the 1990s the percentage of 7'V households viewing cable and satellite TV
programs increased while the percentage viewing network affiliate shows generally
decreased. The prime-time ratings for the network affiliates in 1993 was 40.9. The
ratings fell in 1995 to 37.3.

(a) Find the equation for the linear function (r =year, y = f(z) =rating) whose
graph passes through the two points given.

(b) What should the ratings be in 20007
(c) What year would we expect the ratings to reach 30?

7. The population of Florida was 11,350,000 in 1985 and reached 13,000,000 in 1990.

(a) Find the equation for the linear function (z =year, y = f(z) =population)
whose graph passes through the two points given.

(b) What should the population be in 2000?
(c) What year would we expect the population to reach 25,000,000?

Sample Midterm | Sample Final
14 A B C D
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Find the linear functions satisfying the given conditions:

1. f(3) =2and f(—3) = —4.

We have the points (3,2) and (—3, —4). The slope of the line connecting these two
points is

P Rl :2—(—4)2921
To — X1 3—(—3) 6 )

We may then input one of the points to calculate b for our linear function f(z) =
ax + b.

2=13)+b=2=3+b=b=—1,

so f(x) =z — 1, and we check our work
f(=3)=-3—-1=—4.

2. f(0)=0and f(1) = V2.

We have the points (0,0) and (1,/2). The slope of the line connecting these two
points is:

— 9 _

To — X1 1-0

We may then input one of the points to calculate b for our linear function f(z) =
ax + b.

0=v200)+b=>0=0+b=b=0,
and so f(z) = V2. We check our work,

3. g(2) = 1 and the graph of ¢ is parallel to the line 6z — 3y = 2.

6r —3y=2=3y=6cr—2=y=2x— % and parallel lines have the same slope, so
a=2.

We then have the point (2,1) toinput: 1 =2(2)+b=1=4+b= b= —3 for a final
answer of f(x) =2z — 3.
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4. g(2) = 1 and the graph of g is perpendicular to the line 6z — 3y = 2.

Perpendicular lines have slopes whose product is —1. The slope of the line is 2 (from

the preceding problem), so we have: mymy = -1 =2a=-1=a= —3
We then have the point (2,1) toinput: 1 = —3(2) +b=1=-1+b=b=2fora
final answer of f(z) = —3z + 2.

5. The x and y-intercepts of f are 5 and —1, respectively.

We have the points (5,0) and (0, —1). The slope of the line connecting these two
points is:

:?J2—yl _0—(_1)_1

a

To — X1 5—0 5

We may then input one of the points to calculate b for our linear function f(x) =
ax + b, to obtain

1
0==-0bB)+b=0=1+b=b=—1,

)
so f(z) = tx — 1, and we check our work
1
f0) = £(0)—1=-1

6. During the 1990s the percentage of 7'V households viewing cable and satellite TV
programs increased while the percentage viewing network affiliate shows generally
decreased. The primetime ratings for the network affiliates in 1993 was 40.9. The
ratings fell in 1995 to 37.3.

(a) Find the equation for the linear function (z =year, y = f(x) =rating) whose
graph passes through the two points given.

Y2 — V1 37.3 —40.9 —3.6 18 9
a = = = = — 1. P —
ro—x1 1995 — 1993 2 o
We may then input one of the points to calculate b for our linear function f(x) =

axr + b.

9 9
37.3 = —5(1995) +b=373=—-3591+b=b=3628.3s0 f(z) = —Sx + 3628.3

and doublecheck

9
£(1993) = —5(1993) + 3628.3 = —3587.4 + 3628.3 = 40.9 .
(b) What should the ratings be in 2000?

9
£(2000) = —=(2000) + 3628.3 = ~3600 + 3628.3 = 28.3
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(c) What year would we expect the ratings to reach 30?
This amounts to solving the equation

9 9
30 = —Sx + 3628.3 = Sx = 3598.3 = z = 1999(approximately).

7. The population of Florida was 11,350,000 in 1985 and reached 13,000,000 in 1990.

(a) Find the equation for the linear function (x =year, y = f(z) =population)
whose graph passes through the two points given.

_yp—yr 13,000,000 — 11,350,000 1,650,000
C Xe— 17 1990 — 1985 N 5

a

= 330, 000

We may then input one of the points to calculate b for our linear function f(z) =
az +b.

13,000, 000 = 330,000(1990) + b = 13,000,000 = 656, 700,000 + b
= b= —643,700,000 so f(x) = 330,000z — 643, 700, 000

and doublecheck f(1985) = 330,000(1985) — 643,700,000 = 655,050,000 —
643,700,000 = 11, 350, 000v*

(b) What should the population be in 2000?
f(2000) = 330,000(2000)—643, 700,000 = 660, 000,000—643, 700, 000 = 16, 300, 000

(c) What year would we expect the population to reach 25,000,000?

This amounts to solving the equation: 25,000, 000 = 330, 000z — 643, 700, 000
= 330,000z = 668,700,000 = x = 2026 (approximately).
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Worksheet

Compute and simplify:

1 f(z) =22+ o+ 1, [oT@
2. g(x) = 2 + 4o 4 4,479

3. flz)=2%g(z) =2+ 1,h(z) =2

@) f(g(z))
(b) go f(x)
(©) h(f(2)
(d) fogoh(2)
(e) foh(g(x))
4. f(z)=Br+1,g(x) =3+ 1,h(z) =%
(@) 2°f - h(z)
(b) (g(=))”
(© (@)
(d) g- (h(z)o f(z))
() 2(x)o(goh(x))

Sample Midterm
30 AB C D
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Solutions

Compute and simplify:
— flath)=f(x) _
1. f(z) =2 +a+41, 7= =
Answer 1.

[l +h) - f(x)

h
_ (b)—g(a) _
2. g(x) =2 + 4o+ 4, L2522
Answer 2.
g(b) — g(a)

b—a

3. f(z) =22 g(x) =2+ 1,h(z) =1
(@) f(g(z))

Answer 3.
flg(z)) =
(b) go f(x)
Answer 4.
go f(x) =
(©) h(f(2))
Answer 5.

(d) fogoh(2)

University of Hawai‘i at Manoa

(x+h)?*+(@+h)+1—(2+x+1)

h
2?2 +2xh+h+rx+h+1—-22—2—-1
h
2xh+h*+h
h
2c +h+1

V> +4b+4 — (a® + 4a + 4)

b—a
B W +4b+4—a®>—4a—4
B b—a
P —ad®+4(b—a)
- b—a
 (b+a)b—a)+4(b—a)
- b—a
 (b—a)b+a+4)
B b—a

b+a-+4
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Answer 6.

fogoh(d) = (goh(2)
(

N | —
w
+
—
N~
no

I
CD|OO/\/\/\
=l oo ol T —

_l’_

—_

N——
[N}

(€) foh(g(x))

Answer 7.

Foh(g(z)) = (h(g(x))? = (L)z _ ( 1 )2 _ 1

20 4+ 223 +1

4. f(x) = V3r+1,g(z) = 3v+ Lh(z) = 5
(@) «°f - h(z)

Answer 8.

23 f - h(x) :x3-\/3$+1-$:x\/39§+1
(b) (g(z))

Answer 9.
(g(2))* = B3z +1)* = 92* + 62 + 1
(©) )
Answer 10.
h 4 1 1
g 3r+1 22(3x+1) 3x3422
(d) g-h(z)o f(z)
Answer 11.
1 g(x) 3r+1
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Functions: Arithmetic

Solutions

(&) L(x)o (g0 h(x))
Answer 12.

University of Hawai‘i at Manoa

(x) o (g o h(x))

85

1
(Z+1)2-B3(Z+1)+1)
1
(Z+5+D(F+9)
1
Sr A+ + R+ 5 +4
1
SR +5+4
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Worksheet

Compute:

L fog(w) f(z) = ||, g(z) = 2% +1
2. go fog(x), f(x) =22+ 1,g(x) = 2
3. foho f(x), f(x) =3z, h(z) = ﬁ
4. Write as a composition of two functions:
@) 47
(b) Va?+2x
(c) 2723
(d) 2z+2

2x+1

5. Write as a composition of three functions:

(a) %22 + 2V 11
(b)

r—1

2z+1|+(2z+1)2
(c) *] ‘*‘(22;:51)44-)

We say that a function f(x) is the inverse of a function g(x) if
fog(x)=x=go f(z)

6. Verify that the given functions are inverses of each other.

@ f(z) =27 g(x) =z
(b) f(z) =1,9(z) =
() flz) =, g(x) = 25

Sample Midterm | Sample Final
18 A B C D
19 A B C D
288 A B C D
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Compute:

L fog(x), f(x) = ||, g(x) = 2* +1

Answer 1.
foglx) =lg(z) =|z* +1] =2* +1

2. go fog(a), flx) =22 +1,g(x) = 2

Answer 2.

go fog(z)=(fog(x))’=(2g9(x) +1)" = (22" +1)* = da’ + 4a” + 1

3. foho f(x), f(x) =3z, h(z) = ﬁ

Answer 3.

foﬁof(g”):?’(hof("”)):?’(zf(;T) :3(2~3i+1> :6;11

4. Write as a composition of two functions:

@) 47

Answer 4. Let f(z) = L and let g(x) = 2 + 1. Then

xT

foglz)=——==

(b) Va2 + 2z

Answer 5. Let f(z) = /x and let g(z) = 2 + 2x. Then

fog(x)=Vg(z) = Va2 + 2z

(c) 2723
Answer 6. Let f(z) = 3z and let g(z) = 2®. Then

go f(z) = (f(2))* = (32)° = 272"
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(d 2x+2

2x41
Answer 7. Let f(z) = —%; and let g(z) = 2z + 2. Then

glz)  22+2 2242
glz)—1 2z+2-1 22+1

foglz)=

5. Write as a composition of three functions:

(@) * 2 +2va2+1
Answer 8. Let f(z) = 22 + 22 — 1,9(z) = /x,h(x) = 2° + 1. Then

fogoh(z) = (goh(x))+2(goh(z)) -1
h(@))* +2(v/h(z)) — 1
= (Wa2+ 1) +2(Wa2+1)—1

= 2’ +1+2Va2+1-1
= 22+ 2vVa2+1

o~~~

®) 7=

Answer 9. Let f(z) = 1, g(2) = \/z,h(z) = 2 — 1. Then

I R |
goh(z)  /h(z) Va-1

fogoh(x)=

2 2x+1)2
(0) * +(12|;+(1)j)

Answer 10. Let f(z) = ‘/ﬁx,g(w) =22 h(z) = 2z + 1. Then

Vgoh(z)+goh(x)
(g0 h(x))?

V (h(2))? + (h(2))?
((h(x))?)*

|h(z)| + (h(x))?
(h(z))*

|22 + 1] + (22 + 1)?
(2x 4+ 1)%

fogoh(x)
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Solutions

We say that a function f(z) is the inverse of a function g(x) if
fog(x)=x=go f(z)

6. Verify that the given functions are inverses of each other.

(@) fx) = 2% g(x) = V7
Answer 11.

fogla)=(Vg(@)) = (V) ==
go fx) =/ f(x) = Va? =

T
Since f(g(z)) = = = g(f(x)) the functions f(z) and g(z) are indeed inverses of

one another.

(b) f(z)=1,9(x) =3

Answer 12. ) )
f @) g rT) = —=— =2
(@) g(z) 1
1 1
gof@)=c==1=1
fla) 1
Therfore, f o g(x) = 2 = g o f(x), as desired.
(© flz) =2 g(x) =
Answer 13.
glz) +1
foglz) =
(@) g(z) —1
x+1
=
il
==
Tzl ozl
r—1 r—
414 (z—1)
_ z—1
- z+1—(x—1)
rz—1
2z
_ x—1
- 2
rz—1
2x rz—1
r—1 2
= x

Clearly, go f(x) = x by the same calculation and therfore fog(z) =z = go f(x)

as desired.
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We have developed the tools to solve the general quadratic equation
ar’ +br+c=0;a,b,c €R

and will now discuss the solutions to equations that can be reduced to a quadratic equa-
tion.

1. Solve: x* — 622 + 8 = 0.
Answer 1. Observe that 2* — 627 + 8 = (22 — 4)(2? — 2) = 0 and so either
P —4=0=1=42 or 2 —2=0=1z=+V2

and the solution set is {2, —v/2,1/2,2}.

Notice that we could have used the quadratic formula if we changed the variable
by setting ¢t = 2. Then our equation can be rewritten as

2t — 627 +8 = (2?)? —6(2*) +8 =1t -6t +8=0
and we apply the quadratic formula with a = 1,b = —6, ¢ = 8 and obtain

t_6ix/36—32_6i2
N 2 2

=t e {24}

We have thus solved the reduced equation, but {2,4} is not the solution set to our
original problem. Remember that ¢ = 2? so as above we need to solve 2% = 2
and z? = 4, which will produce the set of solutions to the original equations, i.e.

{—2,-v2,v2,2}.

2. Rewrite each equation of quadratic type as a quadratic equation in ¢ and give the

change of variable.

(@) 2°+223+1=0

b) (z—2)*+(x—22+6=0
() 825 + 225 +1=0

(d) 27 54+234+7=0

() 2% +4*+3=0
Answer 2.

(@ ?+3t+1=0,t=a3

(b) 2 +t+6=0,t=(xr—2)?
() 82 +2t+1=0,t=uz5

d) ?+t+7=0,t =273

(e) > +t+3=0,t=2%
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3. Find all real solutions of each equation.
@y -T+12=0
(b) x
(©) =

Answer 3.

—9
4+ 325 —28 =0

Wi wlN

(a) Rewrite y=2 — 5 + 12 = 0 with the change of variable ¢ = y~2 and obtain ¢* —
7t + 12 = 0. This reduced equation factors as (¢t — 3)(t — 4) = 0 and whence
its solution set it {3,4}. The solutions to the original equation are obtained by
solvingy 2 =t =3and y? =t = 4. We have,

1
Yy =3 = ¢’ = 3
1 3
= y=t—= i£ ,
V3 3
and
—2 o _ 1
y =4 = y = -
4
<~ = :|:1
y - 2 °
. . 1 \/g \/g 1
Therefore, the solution set is {—5, =5, *5°, 5} .

(b) Rewrite 25 = 9 with the change of variable t = 23 and obtain 2 = 9. It is clear
that the set of solution to the reduced equation is {—3, 3}. Then, to obtain the
solutions to the original equation, we solve

1 1
T3 =1t=-3 <= x3 =3
— v =-27,

and

W=

gi=t=3 & 13=3
—

Therefore, the solution set is {—27, 27}.

University of Hawai‘i at Manoa 91 ® Spring - 2014



Math 135

Quadratic Equations Examples

(c) Rewrite 25 + 325 — 28 = 0 with the change of variable ¢ = 23, and obtain

24+3t—28=0.

Observe that t? + 3t — 28 = (t + 7)(t — 4) = 0 and therefore the solution set to
the reduced equation is {—7,4}. Then,

—t=-T7 < 23 =—7

=

x
— = -343,
and
i=t=4 & g3 =4
— r=064.

The original equation has the solutions {—343, 64}.
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Math 135 Quadratic Equations

Worksheet

1. Factor into at least two factors.

(a) 23 — 3z3 — 28 =0
(b) 4274 —-33272-27=0
(c) 25 — 102* + 2422 = 0
d) #* —81 =0
2. Find all real solutions of the following equations.
(@) 254+22°+1=0
®) (z—1)*+(x—12-3=0
(c) 8z3 +225 +2 =0
(d) 627 ¢+3273-2=0
(e) 227 — 27+l _ g —

3. Solve and write the solutions in set notation.

(@ V2r+1=2
(b) Ve —3=2-3
) vVr+l=x-1

Sample Midterm Sample Final
33 A B C D
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Math 135 Quadratic Equations Solutions

1. Factor into at least two factors.

(a) 23 — 3z3 — 28 =0

Answer 1.
2

0=23 — 327 — 28 = (23 — 7)(x5 +4)
(b) 4274 —33272-27=0
Answer 2.

0=427 =332 -27T= (4o 2 +3) (22— 9) = 4z >+ 3)(x ' = 3)(z™ ' +3)

(c) 2% — 102* + 2422 =0

Answer 3.
0 = 2°—102"+242* = 2 (2" —102°+24) = 2*(2°—6)(2°—4) = 2*(2°—6)(z—2)(z+2)
(d) 2 —81=0
0=2z2"—81=(22+9)(z> - 9) = (2* + 9)(z + 3)(x — 3)
Answer 4.

2. Find all real solutions of the following equations.

(@) 25+222 +1=0

Answer 5. The reduced quadratic equation is t* + 2t + 1 = 0 with ¢ = z°.
Factoring we obtain t* + 2t + 1 = (¢t + 1)? = 0 and whence the set of solutions to

the reduced quadratic equation is {—1}. Solving ¢ = 2® = —1 we obtain {—1}
as the set of solutions to the original equation. [Note that since ¢ = —1 is a root
of degree 2 of the reduced quadratic, = —1is a root of degree 2 of the original
equation.]

Another way to solve this problem is to observe that 2° +22°+1 = (23 +1)* = 0
and therefore the solutions satisfy 2* = —1, which produces the solution set
{—1}.
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Quadratic Equations Solutions

(b)

(©)

(z—1D'+(x—-1)2*-3=0

Answer 6. The reduced quadratic is t* + t — 3 = 0 with ¢t = (z — 1)%. By the
quadratic formula we have

t =

-1+v1+12 -1+V13
2 - 2

The solution set of the reduced quadratic is therefore

{—1+\/ﬁ —1—\/ﬁ}

2 2

and to obtain the solution set to the original equation we solve
t=(r—1)? = =&/

—1++13 —~1++13
=—F— = r—1=+ —

— x:1i\/#1_3

Observe that since 3 < /13 < 4 the above calculation produces two complex
solutions. The solution set of the original equation is therefore

—1 13 —1 13
P P

Answer 7. The reduced quadratic equation is 8% + 2t + 2 = 0 with ¢ = 5,
Computing the discriminant shows that since it is 4 — 4(8)(2) < 0 that the
reduced quadratic has no real solutions and therefore the original equation
does not have any real solutions. The solution set is therefore the empty set, (.

(z—1)°

825 4225 +2=0
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Math 135 Quadratic Equations Solutions

(d) 627543273 —-2=0

Answer 8. The reduced quadratic equation is 6t* + 3t — 2 = 0 with ¢ = 2%,
By the quadratic formula we obtain

. —3+1/9+48 -—3+./57
B 12 12
The solution set of the reduced quadratic equation is therefore

{—3+\/ﬁ —3—\/5}

t

12 12

We need to solve t = 272 for each element of this solution set in order to obtain
the solutions to the original equation.

m,gz—Si\/ﬁ PR v
12 —34 /57
— x:3—12
—3+57

The solution set of the original equation is therefore

o120 12
—34+57\| =3 — /57
(e) 22x_2x+1 —8=0

Answer 9. The reduced quadratic equation is t? — 2t —8 = 0 with t = 2%, which
factors as (t — 4)(t + 2) = 0. This tells us that the original equation factors as
(2 —4)(2* +2) = 0 and either 2* = 4 = = 2 or 2* = —2, which is impossible.
The solution set of the original equation is therefore {2}.

3. Solve and write the solutions in set notation.

(@ V2r+1=2
Answer 10.

V2z+1 = 2

VI FI? = 2

20 +1 = 4

2 = 3

3

r = =

2

We think that the solution set is {2}, but it is necessary to verify it.

3
2-.—4+1=2
2+
V3+1=2
Vi =2

The solution is valid and therefore the solution set is {2}.
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(b) v —3=x-3
Answer 11.
vVae—3 r—3
(Vo =3 = (z-3)

r—3 = (v—3)*
0 = (z-37—(z—3)
0 = (z—=3)(x—3-1)
0 = (z—3)(x—4)

We think that the solution set is {3, 4}, but is necessary to verify it.

4-3 = 4-3
Vi =1
3—-3 = 3-3
VO =
Both solutions are valid, therefore the solution set is {3, 4}.
) vVer+l=2x-1
Answer 12.
ve+1l = z-1

Vz+1)? = (v 1)
r+1 = 22—2r+1
0 = z2—-32

0 = z(z—3)

We think that the solution set is {0, 3}, but it is necessary to verify it.

VOFT = 0-1
VIo#£ -1

V3+1l = 3-1
Vi = 2

x = 0 is not a valid solution, therefore the solution set is {3}.
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Math 135 Functions: The Inverse Worksheet

1. In the “Functions: Examples” worksheet from Week 6 do the following:

(a) Determine whether each function is one-to-one.

(b) Graph the inverse of each one-to-one function in part (a). [Hint: Reflect about
y=uw]
(c) For each one-to-one function compute the inverse function f~!(z).

(d) Verify algebraically that each inverse function from part (c) is indeed the in-
verse. That is, check that

(e) Verify that the domain of f(x) is the range of f~!(z) and that the range of f(x)
is the domain of f~!(x).

2. For each f(z) compute f~!(z) and find the range of f(x).

(@) f(x) =5 +3
(b) fz) =V +1
(€) ** f(x) =272 + 272> + 9z + 1
3. The following functions are not one-to-one. For each function state the largest subset

of the domain on which the given function is one-to-one, then compute the inverse
function where it exists.

@) f(z) = a?
(b) f(z) = [x]
(©) flz) =2

Sample Midterm Sample Final
10 A B C D
1 A B C D
17 A B C D
18 A B C D
28 A B C D
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Math 135 Functions: The Inverse Solutions

1. In the “Functions: Examples” worksheet from Week 5 do the following:

(a) Determine whether each function is one-to-one.

Answer 1. The one-to-one functions, i.e. the ones which pass the horizontal
line test are

f(z ):ax—l—b a,beR;a#0
f(x)=2°
iii. f(z)=2
iv. f(z) =z
v. flz) =V
(b) Graph the inverse of each one-to-one function in part (a). [Hint: Reflect about
y=uw]

Answer 2. See graphs beginning on page 103.
(c) For each one-to-one function compute the inverse function f~!(z).
Answer 3. Set f(z) = y, replace y with x and solve for y:
i. f(zr) =ax+b;a,b€ R;a+#0.Solve fory: z = ay+ b;a,b € R;a#0

=0

i, f(x) = 2% Solve for y: 7 = 3

= e
iii. f(x) = L. Solve fory: z = 1

) =<
iv. f(z) = v/ Solve fory: z = /§

f7 ) =
v. f(z) = ¥/z. Solve for y: « = ¢j

f ) =
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Math 135 Functions: The Inverse Solutions

(d) Verify algebraically that each inverse function from part (c) is indeed the in-
verse. That is, check that

Answer 4.
f(x)of_l(ac):a<x;b>+b:x—b+b:x
e )= DT,
i. f(z)=2a* ,
f@)o i) = (Va)* =2
Fi@)e f@) = VaF =
iii. f(z) =1 1
@)oo i) =+ =a
o) =1 =
v () = v
Fla)o f @) = Vet =
fl@)o fl@) = (Va)©
v. f(z) =z

(e) Verify that the domain of f(x) is the range of f~'(z) and that the range of f(x)
is the domain of f~!(x).

Answer 5. See the table given for each one-to-one function.
2. For each f(r) compute f~!(z) and find the range of f(z).
(@) f(z)=;5+3
1

Answer 6. The inverse function is obtained by solving for y in z = = + 3.

1 1
rT=——+4+3 = rv-3=——
y—1 y—1
— 1= 1
4 -3
= y=——7+1

Thus, f~'(z) = -5 + 1 and the domain of f~!(z) is the range of f(z) is the
union (—o0, 3) U (3, 00).
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(b) f(z) =Ve+1

Answer 7. The inverse function is obtained by solving for y in » = {/y + 1.

r=Yy+1 = xz-1=Yy
= y=(z-1)°
Thus, f~'(z) = (z — 1)? and the domain of f~'(z) is the range of f(z) is the
entire real line, i.e. (—o0, 00).
(c) ** f(z) = 2723 + 272* + 9z + 1

Answer 8. Note that f(z) = 272% + 272 + 92 + 1 = (3z + 1)®. Then the inverse
function is obtained by solving for y in z = (3y + 1).

r=0By+1)? — Jr=3y+1
— Jr—1=3y

1. 1

Thus, f'(z) = $¥/z — 5 and the domain of f~'(z) is the range of f(z) is the
entire real line, i.e. (—00, 00).

3. The following functions are not one-to-one. For each function state the largest subset
of the domain on which the given function is one-to-one, then compute the inverse
function where it exists.

Remark 9. Sometimes there is not one way to choose a valid domain, but some
choices are more natural than others. In either case, be sure to carefully state the
domain and range.

@) f(z) =2
Answer 10. The two possible choices for the domain are (—oo, 0] and the usual
choice, [0, 00). The inverse function of f(z) = z? restricted to [0, 0) is f~(z) =
vz, as we have already seen. The more interesting case is the inverse function
of f(z) : (—o0,0] — [0,00). We know that the domain of f(z) is the range of
f~!(x) and in the course of the usual computation we have

r=19" <= y=+Vr

and we must choose the negative square root. Therefore, the inverse function
of f(z) = 2? restricted to (—o0,0] is f~(z) = —/x.
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(b) f(z) = |x]

Answer 11. The two possible choices for the domain are (—oo, 0] and the usual
choice, [0,00). By definition of the absolute value function, on each possible
domain we are dealing with a linear function. Thus, f(z) = |z| restricted to
[0,00) is just f(z) = x and is its own inverse, as we have already seen. The
inverse function of f(x) = |z| restricted to (—o0, 0] is the inverse function of
f(z) = —x which maps (—o0, 0] to [0, 00). It must be f~!(z) = —z, i.e. its own
inverse (put a = —1,b = 0 in the formula for the inverse of a linear function).

(© fl2) =z
Answer 12. The two possible choices for the domain are (—oo O) and the usual

choice, (0,00). If we consider the one-to-one function f(z) = = : (0,00) —
(0, 00), then its inverse function is given by f~!(z) = \/LE = % When looking

for the inverse we are solving for y in the equation z = y% and so

1 2
— _:|:1
Y= \/E
<~ y:iﬁ
X

and we are forced to choose between the positive and negative square roots. If

the domain of f(z) is taken to be (—o0, 0), then the inverse functionis f~!(z) =
VT

xT

Note 13. It would be excellent practice to graph these inverse functions and to verify
algebraically that they are indeed inverses of one another! [Hint: v/z2 = |x]
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Solutions

c,c € R.

Functions: The Inverse
{c}

none

none

none
c,T=c
c,r=-c
c, T
c, T =c

y-axis

(—OO, OO)

Domain
Range
Intervals of Increase
Intervals of Decrease
Turning Points
Local Maxima
Local Minima
Global Maxima
Global Minima
Symmetry

1. The constant function: f(x)

Math 135

QO
—
8
~—
S—
8
A
N | | | | | | |
B S R e I === === === - -
(R J | | | | | | |
| " | | | | | | |
| . | | | | | | |
| AN | | | | | | |
| . | | | | — | |
| 00, | | | e\ | |
— - - - - — = B e I g e |- — — — — — — T\_ \\\\\ - ==-—-—-— -
| e O | | | | |
| ¢ T | T | | T | |
- QO QO O
| | . | = | | | | |
I I I I I I
| I ‘0 I ‘ | ‘ | |
| | v | | | | |
-—t - - = === F\\\\\\’& \\\\\\ U g = = = = = = = == === == === = -
| | ,00 | | | | |
| | | | | | | |
-
| | N 'S | | | | |
| | O - | | | | |
-~ A
| | —_ ! . | | | | |
| | N . | | | |
L F\\\‘\L \\\\\\ D [ [ [ L
| | | I 3 | | | |
| | | ,00 | | | |
| | | | - | | | |
| | | | 00 | | | |
| | | | . | | | |
| | | | - | | | |
A
| | | | | | | |
= | | | | - | | | |
| | | | - | | | |
| | | | 00 | | | |
| | | | . | | | |
| | | | “ | | | |
| | | | 4 | | | |
| | | | A g | | |
T T R T N A +¢ \\\\\\ T T T o T T T
N
| | Q) | . | | |
| | | | [ | | |
| | 27, | | 00 | | |
| | | | | A | | |
| | _, | | oo, | |
| | | | | A | |
\,\\\\\\\\,\\\.\\,\\\\\\\, \\\\\\\\\\\\\\ [ d \\\\\\ [ R
| | | | | [ 2 | |
| | | | | | " | |
| | | | | | LY | |
| | | | | | . | |
| | | | | | 00 | |
| | | | | | . |
I IR e B e [ [ fo \\\\\\ T
| | | | | | . |
-
| | | | | | | . |
| | | | | | | - |
| | | | | | | 00 |
| | | | | | | - |
| | | | | | | 4|
I e e L - = - - - - - - - - -—-——- - - - )v‘\
| | | | | | | S

® Spring - 2014

103

¢ is not one-to-one and hence f~!(z) is not a func-

Recall that the reflection about the line y = x of a horizontal line is a vertical line.

Observe that the function f(x)

tion.
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Functions: The Inverse

Math 135

axr + b;a,b € R.

2. The linear function: f(x)
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Functions: The Inverse

Math 135

3. The square function: f(z) = z?.
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r? is not one-to-one on its domain, hence f~!(z) is not a func-

Observe that f(z)

tion.
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Functions: The Inverse

Math 135

4. The cube function: f(z) = z°.
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Functions: The Inverse

Math 135

5. The inverse function: f(z) = 1.
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is its own inverse and f~!(z) = 2.

1
T

The function f(z) =
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Functions: The Inverse

Math 135

1
x2°

6. The inverse square function: f(z) =

B)
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is not one-to-one on its domain, hence f~!(z) is not a func-

1
2

Observe that f(z) =

tion.
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Functions: The Inverse

Math 135

7. The square root function: f(z) = /.
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Note how the domain affects the graph of the inverse function and compare this to

= x2.

the above problem with f(x)
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Math 135

8. The cube root function: f(z)
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Functions: The Inverse

Math 135

9. The absolute value function: f(z) = |z|.
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|z| is not one-to-one and so f~!(x) is not a function.

Note that f(z)
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Math 135 Quadratic Functions Examples

Recall that we have begun the semester with the discussion of linear equations and
have recently specialized to linear functions. Similarly, we will demand now that our
quadratic equations be functions. There was but one class of linear equations that are not
functions: the vertical lines. In order to guarantee that a quadratic equation passes the
vertical line test and is therefore a function it must be of the form

f(z) =ax* +bx +c;a,b,cc R

This very special class of functions has an equally nice graphical representation. The
graph of a quadratic function is a parabola. We have already developed the tools nec-
essary to determine the basic characteristic of a parabola given the quadratic equation
that represents it. Recall that by completing the square any quadratic equation may be
rewritten in the form

alr —h)* +k

and from here we make the following definitions

Definition 1.

1. The point with coordinates (h, k) is the vertex of the parabola.
2. The vertical line = = h is the axis of symmetry of the parabola.
3. The z-intercepts are the roots of the parabola.

If = 0 is the axis of symmetry, then the parabola is symmetric about the y-axis, but
this need not always be the case. Both the axis of symmetry and the vertex are easily
obtained from the quadratic equation by completing the square. In order to determine
the roots of the parabola we calculate the z-intercepts, i.e. let f(z) = 0 and solve for z.
This amounts to solving the quadratic equation and to do so we may use our favorite
method.

The coefficients of z* play an important role in our analysis of f(z). If a > 0, then
the parabola opens up and the vertex is the point at which the global minimum occurs.
If a < 0, then the parabola opens down and the vertex is the point at which the global
maximum occurs. This observation suggests that in order to optimize a quantity that is
expressible by a quadratic equation, it suffices to find the vertex of the parabola whose
equation is the quadratic function f(z). Then the x — h is the value which optimizes f(z)
and f(h) = k is the optimal value of f(z).

Example 2. Let A be the triangle with one vertex on the positive z-axis, one vertex at the
origin (0,0) and one vertex on the line y = —2z + 12. Find the dimensions of the largest
such triangle.

Answer 3. The area of A is a function of its base and height. Since x is the length of
the base and y is the height the area function is Ax(z,y) = 3. We do not know how
to optimize functions of two variables, but fortunately we know that y = —2z + 12 and
substituting for y, we obtain

Ap(z) = g(—Qas +12) = —a% + 6z .
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