1. Consider the line given by $y=2 x+3$.
(a) Find five points on the line and arrange them in a table.
(b) Graph the line.
(c) Find the x-intercept and the y-intercept.
2. Find the slope-intercept form of the equation of the line through the points $(-1,4)$ and $(2,7)$.
3. Consider the line passing through the point $(3,4)$ with slope -1 .
(a) Write down the equation of the line in point-slope form.
(b) Write down the equation of the line in slope-intercept form.
(c) Find all intercepts.
4. Consider the line $y=3 x-1$.
(a) Find the equation of a parallel line through $(-2,5)$.
(b) Find the equation of a perpendicular line through $(2,4)$.
5. Consider the line $3 x-2 y=6$.
(a) Find the slope and intercepts of the line.
(b) Find a point on the line and a point not on the line.
(c) Write the equation of the line in slope-intercept form.
6. Find the point of intersection of the graphs of $-x+3 y=-24$ and $x+y=-8$.
7. Solve:

$$
\begin{cases}y & =3 x+2 \\ 3 x+6 y & =12\end{cases}
$$

8. Write down a system of two linear equations that has
(a) Exactly one solution
(b) No solution
(c) Infinitely many solutions
9. Derive the point-slope form of the equation for a line by following these steps.

Step 1: Let L be the line passing through the fixed point $\left(x_{1}, y_{1}\right)$ and an arbitrary point (x, y).
Step 2: Manipulate the general formula for the slope of L.

