1. Consider the line given by \(y = 2x + 3 \).
 (a) Find five points on the line and arrange them in a table.
 (b) Graph the line.
 (c) Find the \(x \)-intercept and the \(y \)-intercept.

2. Find the slope-intercept form of the equation of the line through the points \((-1, 4)\) and \((2, 7)\).

3. Consider the line passing through the point \((3, 4)\) with slope \(-1\).
 (a) Write down the equation of the line in point-slope form.
 (b) Write down the equation of the line in slope-intercept form.
 (c) Find all intercepts.

4. Consider the line \(y = 3x - 1 \).
 (a) Find the equation of a parallel line through \((-2, 5)\).
 (b) Find the equation of a perpendicular line through \((2, 4)\).

5. Consider the line \(3x - 2y = 6\).
 (a) Find the slope and intercepts of the line.
 (b) Find a point on the line and a point not on the line.
 (c) Write the equation of the line in slope-intercept form.

6. Find the point of intersection of the graphs of \(-x + 3y = -24 \) and \(x + y = -8 \).

7. Solve:
 \[
 \begin{align*}
 y &= 3x + 2 \\
 3x + 6y &= 12
 \end{align*}
 \]

8. Write down a system of two linear equations that has
 (a) Exactly one solution
 (b) No solution
 (c) Infinitely many solutions

9. Derive the point-slope form of the equation for a line by following these steps.
 Step 1: Let \(L \) be the line passing through the fixed point \((x_1, y_1)\) and an arbitrary point \((x, y)\).
 Step 2: Manipulate the general formula for the slope of \(L \).