1. Draw the following intervals on the number line.
(a) $[-1,4)$

(b) $(2,6)$

(c) $(3, \infty)$

(d) $(-\infty, 5]$

2. Write as an interval: $\{x: x \in \mathbb{R}\}$; i.e., "The set of all x, where x is a real number." $(-\infty, \infty)$ Draw this interval on the number line.

3. Plot on the number line: $[-2,3) \cap \mathbb{Z}$; i.e., "The intersection of $[-2,3)$ with the set of integers."

4. Arrange from least to greatest: $|-\pi|,|-3|, 3,-|-4|,-4$.

Use the symbols " $<$ " and " \leq ". $\quad-4 \leq-|-4|<3 \leq|-3|<|-\pi|$
5. Simplify to an integer: $|2(|-1-3| \cdot|6-8|)-5| \quad 11$
6. Rewrite $|x+2|-|1-x|$ without using the absolute value sign, where:
(a) $x<-2 \quad-3$
(b) $x \geq 4 \quad 3$
(c) $x=0 \quad 1$
7. Write using the absolute value sign the expression representing the distance on the number line between 3 and $-1 . \quad|3-(-1)|$
8. Write using the absolute value sign: "The distance between x and -2 is greater than or equal to 3." $|x-(-2)| \geq 3$
9. Consider the intervals $[-4,3]$ and $[1,8)$.
(a) Draw these intervals on the number line and mark the interval representing their intersection.

(b) Express the intersection in interval notation.
$[1,3]$
(c) Express the intersection in set notation without using the absolute value sign. $1 \leq x \leq 3$
(d) Express the intersection using the absolute value sign. $\quad|x-2| \leq 1$
10. Write as a union of two intervals: $\{x:|x-3|>4\}$. $\quad(-\infty,-1) \cup(7, \infty)$
11. Plot on the number line: $\{x:|x+2| \leq 5\}$

12. Plot on the number line: $\{x:|4-x| \geq 1\}$

13. Solve and write the answer in set notation: $-2<x-3<4 . \quad\{x: 1<x<7\}$
14. Solve and write the answer in interval notation: $|x+4| \leq 5$ and $x>-3$. $\quad(-3,1]$
15. Solve and write the answer using absolute value: $-7<1-x<-5 . \quad|x-7|<1$

