1. Complete the square for the following expressions.
(a) $x^{2}-6 x+15 \quad(x-3)^{2}+6$
(b) $x^{2}+2 x-8 \quad(x+1)^{2}-9$
(c) $4 x^{2}-8 x+3 \quad 4(x-1)^{2}-1$
2. Complete the square for the following equations. (Bonus: Solve the equations.)
(a) $x^{2}-8 x+12=0$
$(x-4)^{2}=4$
Solutions: $x=2$ or $x=6$
(b) $x^{2}+3 x-6=0$
$\left(x+\frac{3}{2}\right)^{2}=\frac{33}{4}$
Solutions: $x=-\frac{3}{2} \pm \frac{\sqrt{33}}{2}$
(c) $-3 x^{2}-6 x+15=0$
$(x+1)^{2}=6$
Solutions: $x=-1 \pm \sqrt{6}$
3. Find the center and radius of the circles represented by the following equations.

Hint: Use the method of completing the square to rewrite the equation in the form

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

where (h, k) is the center and r is the radius.
(a) $x^{2}+y^{2}-6 x-8 y=0$
$(x-3)^{2}+(y-4)^{2}=5^{2} \quad$ center: $(3,4)$, radius: 5
(b) $x^{2}+y^{2}-4 x-2 y=11$
$(x-2)^{2}+(y-1)^{2}=4^{2} \quad$ center: $(2,1)$, radius: 4
(c) $2 x^{2}+2 y^{2}+4 x+8 y-20=0$
$(x+1)^{2}+(y+2)^{2}=\sqrt{15}^{2} \quad$ center: $(-1,-2)$, radius: $\sqrt{15}$

