1. We say that a function f is the inverse of a function g if

$$
(f \circ g)(x)=x \text { and }(g \circ f)(x)=x .
$$

Verify that the given functions are inverses of each other.
(a) $f(x)=2 x-8, \quad g(x)=\frac{1}{2} x+4$
(b) $f(x)=\sqrt[3]{x}+1, g(x)=(x-1)^{3}$
(c) $f(x)=\frac{1}{x+1}, \quad g(x)=\frac{1}{x}-1$
2. For each f, compute f^{-1}. Then find the range of f by finding the domain of f^{-1}.
(a) $f(x)=4 x-1$
(b) $f(x)=2 x^{3}-1$
(c) $f(x)=\frac{2}{x-3}$
(d) $f(x)=\frac{x-5}{x+2}$
3. Determine whether each function is one-to-one.
(a) $f(x)=2$
(e) $f(x)=\sqrt{x}$
(h) $f(x)=\frac{1}{x}$
(b) $f(x)=3 x-1$
(f) $f(x)=\sqrt[3]{x}$
(c) $f(x)=x^{2}$
(g) $f(x)=|x|$
(i) $f(x)=\frac{1}{x^{2}}$
4. For each function in $\# 3$ that was one-to-one, compute its inverse.
5. For each function in $\# 3$ that was not one-to-one, state the largest subset of its domain for which the function would be one-to-one.

