1. We say that a function f is the *inverse* of a function g if

$$(f \circ g)(x) = x$$
 and $(g \circ f)(x) = x$.

Verify that the given functions are inverses of each other.

- (a) f(x) = 2x 8, $g(x) = \frac{1}{2}x + 4$
- (b) $f(x) = \sqrt[3]{x} + 1$, $g(x) = (x 1)^3$
- (c) $f(x) = \frac{1}{x+1}$, $g(x) = \frac{1}{x} 1$
- 2. For each f, compute f^{-1} . Then find the range of f by finding the domain of f^{-1} .
 - (a) f(x) = 4x 1
 - (b) $f(x) = 2x^3 1$
 - (c) $f(x) = \frac{2}{x-3}$
 - (d) $f(x) = \frac{x-5}{x+2}$
- 3. Determine whether each function is one-to-one.
 - (a) f(x) = 2
- (e) $f(x) = \sqrt{x}$
- $(h) f(x) = \frac{1}{x}$

- (b) f(x) = 3x 1
- (f) $f(x) = \sqrt[3]{x}$
- (c) $f(x) = x^2$ (d) $f(x) = x^3$
- $(g) \ f(x) = |x|$
- (i) $f(x) = \frac{1}{x^2}$
- 4. For each function in #3 that was one-to-one, compute its inverse.
- 5. For each function in #3 that was <u>not</u> one-to-one, state the largest subset of its domain for which the function would be one-to-one.