\dagger Corrections/alterations have been marked by larger font and a \dagger.
(1) (10 points)

Using the limit definition of the derivative, give $f^{\prime}(x)$ if

$$
f(x)=\frac{1}{x^{2}+1}
$$

$$
f(x)=\frac{1}{x-3}
$$

$$
f(x)=\sqrt{x}
$$

$$
f(x)=x^{2}+5 x
$$

(2) (10 points) Compute

$$
\begin{aligned}
& \lim _{x \rightarrow 9} \frac{\sqrt{x-5}-2}{x-9} \\
& \lim _{x \rightarrow 6} \frac{\sqrt{x-2}-2}{x-6} \\
& \lim _{x \rightarrow 15} \frac{\sqrt{x+1}-4}{x-15} \\
& \lim _{x \rightarrow 1} \frac{x^{2}+2 x-3}{x-1}
\end{aligned}
$$

$$
\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x-2}
$$

$$
\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}
$$

(3) (10 points) Take the derivative of the following, be VERY careful!

$$
f(x)=\frac{\sqrt[3]{\sin \left(x^{2}\right)}}{x^{2}+2 x+\pi}
$$

$$
k(x)=\sqrt{\cos \left(\sqrt{\sin \left(\sqrt{\ln (x) e^{x}}\right)}\right)}
$$

$$
g(x)=\frac{\cos \left(x^{4}\right) 10 x^{2}}{x^{2}+x-4}
$$

$$
h(x)=\frac{\sqrt{\sin \left(2 x^{5}\right)} x^{2}}{e^{x^{2}}}
$$

$$
m(x)=\frac{\sin (x)}{\cos (x)}
$$

(4) (10 points)

Graph the following functions, you will be asked to include and any asymptotes (slant, horizontal and vertical), local min/max (if there is any), intervals of increase/decrease, intervals of concavity, one sided limits at the vertical aymptotes and of course, a sketch that demonstrates all of these characteristics.

$$
h(x)=\frac{x^{2}-1}{x+2}
$$

$$
j(x)=\frac{x^{2}-1}{x}
$$

$$
\begin{gathered}
k(x)=\frac{x^{2}-4}{x+3} \\
(\dagger) l(x)=\frac{x^{2}-4}{x^{2}} \\
(\dagger) m(x)=\frac{x^{2}-2 x+1}{x^{2}}
\end{gathered}
$$

Draw a function with the following properties: $f(2)=1, f^{\prime}(2)=f^{\prime}(4)=f^{\prime}(-2)=$ $0, f^{\prime \prime}(3)=f^{\prime \prime}(0)=f^{\prime \prime}(5)=0, f^{\prime}(x)>0$ on $(-\infty,-2) \cup(2,4), f^{\prime}(x)<0$ on $(-2,2) \cup(4, \infty), f^{\prime \prime}(x)>0$ on $(0,3) \cup(5, \infty), f^{\prime \prime}(x)<0$ on $(-\infty, 0) \cup(3,5)$ and $\lim _{x \rightarrow \infty} f(x)=0$ (note that this means that there is a horizontal asymptote at $y=0$).
(5) (10 points)

Using the IVT and MVT:
State the IVT.
(\dagger) Use the IVT to show that $f(x)=\sin (x) \cos (x)$ has a root on $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$. Is this root unique?

Use the IVT to show that $f(x)=x^{3}+2 x+1$ has a root on $[-1,1]$. Is this root unique?

State the MVT.
Use the MVT to show that $|\cos (x)-\cos (y)| \leq|x-y|$ (you may use the fact that $|\sin (z)| \leq 1$ for any $z \in \mathbb{R}$.)

Use the MVT to show that any differentiable function, $f(x)$, whose derivative is bounded by 1 enjoys the following property $|f(x)-f(y)| \leq|x-y|$.
(6) (10 points) Show that the given point is indeed on the graph. Give the equation of the tangent line at the given point (if one exists).

$$
\sin (x)+\cos (x)-\sin (y x)=1 \quad P=(0,0)
$$

$$
y^{5} x^{2}-2 \frac{x}{y}=-1 \quad P=(1,1)
$$

$$
y^{4} x-4 y^{2} x=-3 \quad P=(1,1)
$$

(7) (10 points) See handout of "optimization problems" for examples
(8) (10 points) See handout of "Related Rates" for examples
(9) (10 points) Evaluate the indefinite integrals:

$$
\begin{gathered}
\int x^{5}+10 x^{2}+4 d x \\
\int \frac{\sqrt{x}+4}{2 \sqrt{x}} d x \\
\int \cos \left(x^{2}\right) 2 x d x \\
\int x^{3}+10 x^{2} d x
\end{gathered}
$$

(10) (10 points) Evaluate the definite integrals:

$$
\begin{gathered}
\int_{-1}^{1} x^{5}+10 x^{2}+4 d x \\
\dagger \int_{1}^{2} \frac{\sqrt{x}+4}{2 \sqrt{x}} d x \\
\int_{0}^{\sqrt{\pi}} \cos \left(x^{2}\right) 2 x d x \\
\int_{0}^{2} x^{3}+10 x^{2} d x \\
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos (x) d x \\
\int_{0}^{1} x^{3}+x^{2}+x+1 d x
\end{gathered}
$$

(11) (10 points) Find the following derivatives

$$
\begin{gathered}
\frac{d}{d x}\left(\int_{2}^{\cos (x)} \sqrt{t^{2}-t^{3}} d t\right)= \\
\frac{d}{d x}\left(\int_{x^{4}}^{\cos (x)} \sqrt{2 t-t^{3}} d t\right)= \\
\frac{d}{d x}\left(\int_{x^{2}}^{\cos (x)} \sqrt{10 t^{100}-t^{3}} d t\right)=
\end{gathered}
$$

(12) (10 points) Find the Area between the given function and the x-axis on the given interval.

$$
\begin{gathered}
f(x)=x^{2}-4 \quad \text { on } \quad[0,4] \\
f(x)=x^{2}-3 x+4 \quad \text { on } \quad[0,6] \\
f(x)=x^{2}-9 \quad \text { on } \quad[0,4]
\end{gathered}
$$

$$
\begin{gathered}
f(x)=\sin (x) \quad \text { on } \quad\left[0, \frac{3 \pi}{2}\right] \\
f(x)=x^{2}-x-2 \quad \text { on } \quad[0,4]
\end{gathered}
$$

(13) (10 points) Find the area between the given curves on the interval $[-1,1]$

$$
\begin{array}{cc}
f(x)=x^{2}, & g(x)=x^{3} \\
f(x)=x, & g(x)=x^{4} \\
f(x)=2 x, & g(x)=2 x^{2} \\
f(x)=x^{4}, & g(x)=x^{3}
\end{array}
$$

