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Abstract

Two mathematical models for tumor anti-angiogenesis, one originally formu-
lated by Hahnfeldt, Panigrahy, Folkman and Hlatky (1999) and a modifica-
tion of this model by Ergun, Camphausen and Wein (2003), are considered
as optimal control problem with the aim of maximizing the tumor reduc-
tion achievable with an a priori given amount of angiogenic agents. For
both models, depending on the initial conditions, optimal controls may con-
tain a segment along which the dosage follows a so-called singular control,
a time-varying feedback control. In this paper, for these cases the efficiency
of piecewise constant protocols with a small number of switchings is investi-
gated. Through comparison with the theoretically optimal solutions, it will
be shown that these protocols provide generally excellent suboptimal strate-
gies that for many initial conditions come within a fraction of 1% of the
theoretically optimal values. When the duration of the dosages are a priori



restricted to a daily or semi-daily regimen, still very good approximations of
the theoretically optimal solution can be achieved.

keywords: biomathematical modeling, optimal control, tumor anti-angiogenesis,
realizable protocols

1 Introduction

Tumor anti-angiogenesis is a novel cancer treatment approach that aims at depriv-
ing a growing tumor of the blood vessel network it needs for growth (e.g., Kerbel,
2000). Initially, a growing tumor gets sufficient supply of oxygen and nutrients
from the surrounding host blood vessels to allow cell duplication and tumor growth.
However, after the avascular growth is over, at the size of about 1 — 3 mm in di-
ameter, this is no longer true and most tumor cells enter the dormant stage in the
cell cycle. These cells then produce vascular endothelial growth factor (VEGF) to
start the process of angiogenesis (Folkman, 1972) to recruit surrounding, mature,
host blood vessels in order to develop the capillaries the tumor needs for its supply
of nutrients. The lining of these newly developing blood vessels consist of endothe-
lial cells that are stimulated by VEGF (Klagsburn and Soker, 1993). Surprisingly,
the tumor also produces inhibitors that at times are used to suppress angiogen-
esis (Folkman, 1995). Anti-angiogenic treatments rely on these mechanisms by
bringing in external anti-angiogenic agents (e.g., endostatin) that interfere with
the pro-angiogenic actions of growth factors like VEGF. This indirectly effects the
tumor which, ideally, deprived of necessary nutrition, regresses. Contrary to tra-
ditional chemotherapy, this treatment targets genetically stable normal cells and
not the genetically unstable and fast duplicating cancer cells. It has been observed
that no resistance to the angiogenic agents has developed in experimental cancer
(Boehm et al., 1997). For this reason, tumor anti-angiogenesis has been called a
therapy “resistant to resistance” that provides a new hope for the treatment of
tumor type cancers (Kerbel, 1997). Naturally, as such it has been an active area of
research in the last ten years not only in medicine, but also in related disciplines
including mathematical biology.

Models for tumor anti-angiogenesis can broadly be divided into two groups:
those that try to accurately reflect the biological processes, (e.g., Chaplain and
Anderson, 1997, Anderson and Chaplain, 1998, Anderson et al., 2000, Arakelyan
et al., 2003,) and those that aggregate variables into low-dimensional dynamical
systems, (e.g., Hahnfeldt et al., 1999, Ergun et al., 2003, d’Onofrio and Gandolfi,
2004, 2006). While the former allow for realistic large scale simulations, the latter
enable a theoretical mathematical analysis. A distinctive place among the second
group is taken up by the model proposed by Hahnfeldt, Panigrahy, Folkman and
Hlatky (1999), a group of researchers then at Harvard Medical School. Modelling
the tumor as a sphere and analyzing the underlying consumption-diffusion pro-
cess theoretically, in this research a two-dimensional model of ordinary differential
equations for the interactions between the primary tumor volume, p, and the car-
rying capacity of the vasculature, ¢, was developed and biologically validated. The



carrying capacity is the maximum tumor volume sustainable by the vasculature.
Since it largely depends on the volume of the endothelial cell population, we also
call ¢ the endothelial support of the tumor for short. Several modifications of this
model have been introduced and analyzed in the literature since then, the princi-
pal ones are those considered by Ergun, Camphausen and Wein from the National
Cancer Institute in the U.S., (2003), and by d’Onofrio at the European Institute
of Oncology in Milan and Gandolfi at National Research Council in Rome, (2004).
The model considered by d’Onofrio and Gandolfi is fully consistent with the mod-
elling implications derived by Hahnfeldt et al., (1999), but both models share the
common feature that the dynamics for the endothelial support reaches its steady
state very fast. For this reason, Ergun et al., (2003), modified the dynamics for
the endothelial support so that the stimulation by the tumor is only proportional
to the tumor radius, not its surface area as it is the case for the other two mod-
els. Besides these variations in the dynamics for the carrying capacity, also various
growth models for the primary tumor volume have been considered. These range
from the Gompertzian dynamics originally chosen by Hahnfeldt et al., (1999), to
classical and generalized logistic growth (e.g., d’Onofrio and Gandolfi, 2004, Swier-
niak et al., 2006, Swierniak, 2008, Ledzewicz and Schéttler, 2009) to the analysis
of growth functions that only satisfy some general convexity properties (Ledzewicz
et al., 2009). More general structures of the dynamics with only qualitative growth
assumptions have been analyzed by Agur et al., (2004), and Forys et al., (2005).
In various papers (e.g., Ergun et al., 2003, Swierniak et al., 2006, Ledzewicz
and Schattler, 2007, 2008a) the problem of scheduling angiogenic agents for these
models has been analyzed as an optimal control problem: given an a priori specified
amount of angiogenic agents, how should they be scheduled in order to minimize
the tumor volume p? Using methods of geometric optimal control we gave com-
plete theoretical solutions to this problem for the original model by Hahnfeldt
et al. (Ledzewicz and Schéttler, 2007), for the model considered by d’Onofrio
and Gandolfi (Ledzewicz and Schéttler, 2008a) and for the modification by Er-
gun et al. (Ledzewicz and Schéttler, 2005, 2009). Optimal controls for the model
from d’Onofrio and Gandolfi (2004) give all available anti-angiogenic agents in one
stretch at maximum dose and thus correspond to a typical medical application
scheme. But for the original model formulated by Hahnfeldt et al., (1999) and
its modification by Ergun et al., (2003), the optimal solution typically contains a
segment along which the control is singular and is given by a time-varying feedback
control depending on the actual states p(t) and ¢(t) of the system. Clearly, with
the current state of medical technologies such a control is not realistic. Thus the
question arises how close to the optimal solution one can come with some simple,
piecewise constant, and hence realizable strategies. The value of knowing the the-
oretically optimal solution lies in the fact that it provides the benchmark to judge
the quality of heuristically chosen simple strategies and protocols. Ledzewicz and
Schéttler, (2008b), already started looking into this question and, for example,
showed that a predetermined maximum dose is not necessarily a good strategy,
but that a constant dosage equal to the averaged value of the optimal dosages pro-
vides an excellent sub-optimal strategy. Essentially, the simulations by Ledzewicz



and Schiéttler, (2008b), show that for a constant dosage that is too low no positive
effect is achieved while the decrease in the tumor volume that can be achieved with
a very high dose becomes marginal. Thus, given a specified amount of agents to be
administered, too high a dose unnecessarily wastes inhibitors that can be used more
effectively at lower dosages over a larger time-interval. Hence the question arises
what are good, simple, and realistic strategies to administer the anti-angiogenic
agents.

In this paper, expanding the discussion in the brief communication by Ledzewicz
et al., (2008), we optimize treatment protocols over some simple classes of piece-
wise constant treatment functions and compare their effectiveness for the models by
Hahnfeldt et al. (1999), and Ergun et al. (2003). It will be shown that these easily
computable strategies which divide the overall amount of anti-angiogenic agents
to be given into a small number of constant dose intervals generally come within
1% of the theoretically optimal values for realistic initial conditions. The times of
administering a specific dosage are included as variables in this optimization and
thus become a part of the solution. We also consider the case when these times
are fixed a priori (e.g., there is an 8 hour period when agents are administered
followed by a 16 hour rest-period). Naturally, due to the resulting lack of freedom,
these strategies do worse, but they still come reasonably close to the theoretically
optimal values. While it is not difficult to compute these constant dosages, it is
only the knowledge of the theoretically optimal solution that allows to judge their
quality. The main conclusion of this paper thus is that simple, piecewise constant,
and hence realistic protocols can be found that come very close to the theoretically
optimal solution. The numerical computations detailed in this paper illustrate this
relationship for fixed values of parameters over a certain range of initial conditions
for two mathematical models. While the used parameter values are based on the
medical literature (Hahnfeldt et al., 1999), clearly this is only intended as a math-
ematical illustration. However, and inherently this is due to dynamical properties
of the system that defines the models under consideration, our main conclusion not
only seems to be generally valid for a wide range of initial conditions, but is also
fully robust with respect to realistic changes in the parameters.

2 A Mathematical Model for Tumor Anti-Angio-
genesis (Hahnfeldt et al., 1999)

This mathematical model was developed and biologically validated by Hahnfeldt,
Panigrahy, Folkman and Hlatky (1999) and, as already stated, its principal vari-
ables are the primary tumor volume, p, and the carrying capacity of the vasculature,
q; that is, the maximum tumor volume sustainable by the vasculature. The dy-
namics describes the time evolution of these quantities. Tumor growth is modelled
by a Gompertzian growth function with variable carrying capacity g, i.e., the rate
of change in the volume of primary tumor cells is given by

p=—tpln (g) (1)
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where ¢ denotes a tumor growth parameter. The dynamics of the endothelial
support consists of a balance between stimulatory and inhibitory effects and is
taken of the following form:

q':bp—(,u—kdp%—l—Gu) q. (2)

The term bp represents stimulation which is taken proportional to the tumor volume
and the three terms with negative signs represent different types of inhibition.
Loss of vascular support through natural causes (death of endothelial cells etc.) is
modelled as pg. Generally p is small and often this term is negligible compared to
the other factors and thus in the literature sometimes y is set to 0 in this equation.
The second term dp%q represents endogenous inhibition due to the fact that the
tumor also produces inhibitors that impact its vascular support. These inhibitors
are released through the tumor surface (hence the scaling of the tumor volume p
to its surface area p%) and interact with the endothelial cells that form the lining
of the newly developing capillaries. The last term Gug models loss of vascular
support due to outside anti-angiogenic agents and the variable u represents the
control in the system. It corresponds to the angiogenic dose rate with G a constant
that represents the anti-angiogenic killing parameter.

The problem which then arises naturally is how to administer a given amount
of angiogenic agents to achieve the “best possible” effect and this leads to optimal
control problems. One possible formulation, considered first by Ergun et al. (2003)
and then taken up for this model and two modifications by Ledzewicz and Schéttler
(2005, 2007, 2008a, 2009) is to minimize the tumor volume or, equivalently, maxi-
mize the tumor reduction possible with the given amount of anti-angiogenic agents.
We thus consider the following problem:

[H] For a free terminal time 7', minimize the value

J(u) = p(T) (3)

over all piecewise continuous functions v with values in the compact interval
[0,a], w : [0,T] — [0,a], that satisfy a constraint on the total amount of
anti-angiogenic agents to be administered,

T
/ u(t)dt < A, (4)
0
subject to the dynamics (1), (2) with initial conditions py and go.

The upper limit a in the definition of the control set U = [0,a] is a previously
determined maximum dose at which agents can be given. Note that in this for-
mulation the time T does not correspond to a therapy horizon, but instead, it is
the time when the maximum tumor reduction is achieved. If all anti-angiogenic
agents become exhausted at a time 7 and p(7) > ¢(7), then even for the control
u = 0 the tumor volume p will still decrease at times ¢t > 7 until the diagonal p = ¢
is reached. (Regardless of the control, the tumor volume decreases for p > ¢ and



increases for p < ¢.) In this sense the dynamics contains after effects and therefore,
if p(7) > q(7), then the optimal control ends with a segment (7, 7] where u = 0.

Mathematically, it is more convenient to adjoin the constraint as a third vari-
able and define the problem in R3 which overall leads to the following dynamical
equations:

p = _gpln (g) ) p(O) = Po, (5)
q="bp— (u+dp%) q — Gug, q(0) = qo, (6)
Y= u, y(0) = 0. (7)

Naturally, from their definitions all state variables need to be positive. It was shown
by d’Onofrio and Gandolfi (2004) that this condition is ensured by the dynamics
and thus it need not be imposed as an explicit constraint.

Since we consider problem [H] for arbitrary initial conditions, in this formulation
degenerate cases are included that we want to exclude for our analysis. These occur
if the initial conditions (pg, go) and the overall amount of anti-angiogenic agents A
are such that it is not possible to reach the region {p > ¢} where the tumor volume
can be reduced. These initial conditions are heavily skewed towards the vascular
support and are biologically not realistic. We refer the reader to Ledzewicz and
Schéttler (2007) for a detailed discussion of these cases, but here we simply assume
that the initial data are well-posed in the sense that it is possible to lower the
tumor volume below its initial condition py. In this case the terminal time 7" along
an optimal solution is positive.

3 The Optimal Solution for Model [H]

Ledzewicz and Schéttler (2007) gave a complete solution for the optimal control
problem [H] in form of a synthesis of optimal controls. A synthesis provides a
full “road map” to all optimal protocols depending on the initial condition in the
problem, both qualitatively and quantitatively. We briefly summarize the gen-
eral structure of optimal trajectories for this case and then proceed to a precise
description of the optimal controls.

Theorem 1 (Ledzewicz and Schdttler, 2007) Given a well-posed initial condition
(o, qo), optimal controls are at most concatenations of the form OasaO where O
denotes an interval along which the optimal control is given by a constant control
u = 0, that is no anti-angiogenic agents are given, a denotes an interval along
which the optimal control is given by the constant control uw = a at full dose, and s
denotes an interval along which the optimal control follows a time-varying singular
feedback control. This control is only optimal while the system follows a particular
curve S in the (p,q)-space, the optimal singular arc. Depending on the initial
condition (po, qo), not all of these intervals need to be present in a specific solution.
For the biologically most relevant initial conditions typically optimal controls have
the form asO.



Despite their name, singular controls and the corresponding singular trajectories
are to be expected in a synthesis of optimal controls for a problem of the type
[H] for nonlinear models (e.g., Bonnard and Chyba, 2003) and we briefly recall
how they arise and their significance!: For our problem it follows from necessary
conditions for optimality that optimal controls u, minimize an expression H of the
form H = U(t) 4+ ®(t)u in u over the control set [0, a] where ® and ¥ are functions
that depend on the corresponding trajectory and time-varying multipliers. Since
this expression is linear in u, minimizing controls typically lie on the boundary
of the control set and are given by the so-called bang controls u = 0 if ® > 0
and u = a if ® < 0 (the 0 and a in Theorem 1). However, the possibility of
an optimal control that takes values in the interior of the control set not only
exists, but it even is quite likely. If no upper limit on the control were imposed,
then this would indeed be the only option. For a minimizing control that takes
values in the interior of the control set, we have %—IZ = ®(t) = 0, the first-order
necessary condition for a stationary point. For a generic, multi-control, optimal
control problem, if the matrix %112{ is nonsingular, then, by the implicit function
theorem the equation %—’Z(t,u) = 0 can locally be solved for u as a function of
t and this defines a so-called non-singular interior control. If, however, %2“}21 is
singular, bifurcations and other degeneracies are possible and there may or may
not exist such a control. For problems that are linear in the controls, like the
ones considered here, we trivially have %?;I = 0 and thus every interior control
necessarily becomes ‘singular’ and a priori is a candidate for both minimizing as
well as maximizing controls. Higher order necessary conditions for optimality, like
the Legendre-Clebsch condition (see, e.g., Bryson and Ho, (1975), Bonnard and
Chyba, (2003)), allow to distinguish them. In this case, in principle these singular
controls (if they exist) can be computed by differentiating the function ® = %—Iu{ in
time until the control u, brought in by the dynamics, explicitly appears and then
solving for u. Generally this defines a time-varying control that depends on the
states and multipliers from the necessary conditions for optimality. At the same
time, since all derivatives of ® must vanish as well, extra requirements arise that in
small dimensions confine the trajectories corresponding to singular controls to thin
sets, an optimal singular arc in this example. This arc, however, if minimizing,
provides the best possible path and therefore it is sought after by all other optimal
trajectories. Hence, if they exist, singular controls and their trajectories lie at the
heart of any solution to an optimal control problem. They correspond to the true
minimizers, characteristic of the problem, while the bang controls are minimizers
that are only brought in because we limit the size of the control. In this sense, the
singular control and the geometry of the singular curve S are the most important
part of the analysis of an optimal control problem and in order to construct a full
synthesis of optimal solutions, the formulas for singular controls and corresponding

ISince knowledge of optimal control theory is not essential for this article, we only give a
cursory overview, but refer the interested reader to some classical texts like Bryson and Ho,
(1975), Fleming and Rishel, (1975), or some more recent introductory text like Bressan and
Piccoli, (2007), for details. Also, the website http://www.scholarpedia.com/ provides a good
starting point to explore the subject.



singular trajectories given below are essential. The derivation of these formulas can
be found in Ledzewicz and Schéttler (2007).

Theorem 2 Using a blow-up of the form xz = %, the singular curve S can be
parameterized in the form
i+ dps = br(l —Inx) (8)

with x € (x%, %) where x7 and =¥ are the unique zeroes of the equation

b

o) ==z(lnx—1)+ E_o 9)
d d

and satisfy 0 < z7 < 1 < a5 < e. The singular control keeps the system on the

singular curve and is given as a feedback function of p and q or x in one of the

following two equivalent forms,

Usin (t) = usin(p(t), q(t)) = é <§ In <f]%) + b% + ;{%pq%(zz) — (u + dp% (t))>
(10)

or, using (8),

Usin (1) = usin(z(t)) = é K%g + bx(t)) Inz(t) + gg <1 - b;ﬁt))] .1

There exists exactly one connected arc on the singular curve S along which the
singular control is admissible, i.e., satisfies the bounds 0 < ugy(z) < a. This arc
is defined over an interval [x}, x| where x; and z}, are the unique solutions to the
equations usin(x;) = 0 and ugn(x)) = a and these values satisfy 7 < zj < 1 <

* *
Ty, < T3.

The two graphs given in Fig. 1 illustrate the proposition for the following pa-
rameter values taken from Hahnfeldt et al. (1999): The variables p and ¢ are
volumes measured in mm?; & = % = 0.084 per day (adjusted to the natural
logarithm), b = 5.85 per day, d = 0.00873 per mm? per day, G = 0.15 kg per mg
of dose per day, and for illustrative purposes we chose a small positive value for p,
1= 0.02 per day. For the control limits we have taken a = 75 mg of dose per day
and A = 300 mg. Fig. 1(a) shows the plot for the singular control defined by (11)
also indicating the values z} and x}, where the control saturates at ugn () = 0 and
Usin(z) = a. Fig. 1(b) shows the graph of the singular curve given by formula (8).
In all our figures we plot p vertically and ¢ horizontally since this easier visualizes
tumor reductions. Saturation of the singular control at xj and x;; restricts the ad-
missible part of this petal-like curve to the portion lying between the lines p = z}¢
and p = 2% ¢. This portion is marked with a solid line in Fig. 1(b). The qualitative
structures shown in these figures are generally valid for arbitrary parameter values,
both for the control and the singular curve. Naturally, with decreasing values for
the upper control limit a the admissible portion shrinks.
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Figure 1: Singular control (a, left) and singular curve S with the admissible portion
marked as a solid curve (b, right) for model [H]

The admissible singular arc becomes the center piece for the synthesis of optimal
solutions that is depicted in Fig. 2. The important curves are the admissible por-
tions of the singular curve (solid blue curve), portions of trajectories corresponding
to the constant controls u = 0 (dash-dotted green curves) and u = a (solid green
curves), and the line p = ¢ (dotted black line) where the trajectories achieve the
maximum tumor reduction. This diagram represents the optimal trajectories as a
whole and each of the different curves gives a different optimal trajectory depend-
ing on the actual initial condition. The thick curves in the graph mark one specific
such trajectory. In this case the initial value py for the tumor volume and ¢q for
the endothelial support are high and require to immediately start with the treat-
ment. The optimal trajectory therefore initially follows the curve corresponding
to the control u = a. Note that, although anti-angiogenic agents are given at full
dose along this curve, this shows very little effect on the number of the cancer cells
in a sense of decrease. During this period the anti-angiogenic agents drive down
the vascular support and in this way prevent a further growth of the tumor that
otherwise, enabled by ample vascular support, would occur. Once the trajectory
corresponding to the full dose hits the singular arc S, it is no longer optimal to
give full dose and the optimal controls here switch to the singular control. The
optimal trajectory then follows the singular arc until all agents are exhausted. At
this time therapy is over. But due to after effects the maximum tumor reduction is
only realized as the trajectory for the control v = 0 crosses the diagonal p = gq. The
corresponding time then is the optimal free end-time 7" considered in the problem
formulation [H]. We only remark that the scenario described here assumes that
no saturation occurs along the singular arc. If that were the case, then optimal
controls no longer follow the singular regimen until saturation, but in fact optimal
trajectories leave the singular arc with the control u = a prior to the saturation
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dose control © = a until the singular arc S is reached, at that point the optimal
control becomes singular and the trajectory follows the singular arc until all anti-
angiogenic agents are exhausted. Due to after effects, the minimum tumor volume
is only realized along a trajectory for u = 0 as the diagonal p = ¢ is crossed.
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point. Simply continuing the control with 4 = a is not optimal (Ledzewicz and
Schéttler, 2007). Also, for initial conditions (pg,qo) with a small tumor volume
(more precisely, initial conditions that lie below the backward orbit for the control
u = a through the saturation point (p},¢’) on the singular arc, labelled z, in Fig.
2) the values for the singular control lie above the upper limit a and are no longer
admissible. For these initial conditions the optimal controls do not contain a singu-
lar segment and are at most of the form 0a0, i.e., give all available anti-angiogenic
agents at maximum dose until they are exhausted. Clearly, in this case the optimal
protocol is realizable and no additional considerations are needed. In this paper
we therefore consider only initial conditions (po, go) for which the optimal control
contains a singular portion.

Fig. 3 gives the optimal control (a, left) and its corresponding trajectory (b,
right) for the initial conditions (po,qo) = (12,000 mm?;15,000mm3). For this
initial condition the optimal concatenation sequence is as0: first the optimal control
is given at full dosage u = a = 75 until the singular curve S is reached at time
t; = 0.091 days. Then administration follows the time-varying singular control
until the anti-angiogenic agents are exhausted at time to = 6.558 days. Due to
after effects the maximum tumor reduction is realized along a trajectory for control
u = 0 at the optimal terminal time T = 6.722 days when the trajectory reaches the
diagonal p = q. In the next section we will use these initial conditions to construct
realizable protocols and compare their minimum values. The theoretically optimal
minimum value for these data is given by p. = p(T') = 8533.38. The numerical
results for the various optimal and suboptimal protocols were obtained using the
optimization toolbox of Matlab and the arc-parametrization method developed by
Maurer et al. (2005).

4 Realizable Suboptimal Protocols for Problem
[H]

In this section we now construct several suboptimal, piecewise constant controls
- hence realizable protocols - for the same initial condition (pg,qo) = (12,000,
mm?>; 15,000 mm?) and compare the minimum values for these classes with the
optimal one. We start with controls that give all available agents in one constant
dosage. One way to approach the problem is to simply give the available amount
A of anti-angiogenic agents at a constant dose u over time ¢, = % and to take as
the dosage the value @ that minimizes the values of the solutions p,, at the times
tuu
@ = argmin Py, (t,,) - (12)
This is a straightforward one-dimensional numerical minimization problem and for
the parameter values specified earlier the optimal dosage and the final time are
given by
4 =45.27 t, = A/t =6.626 days. (13)

However, this formulation is not fully consistent with the optimal control problem
[H] formulated above since the terminal values of the trajectories, (B, (tu) ; Gu (tw)),
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do not lie on the diagonal. For example, we have for the optimal value 4 = 45.27
that (Pa (ta),da (ta)) = (8570.0,4807.1). Since the carrying capacity is smaller
than the tumor volume, there will still be an additional tumor reduction after the
agents have all been exhausted. The amount of this reduction also depends on
the value of the carrying capacity g, (t,,) at the endpoint and this indeed slightly
changes the value of the optimal dosage.

8564 T T T T T T T T T 8544,
Q. 8562 Q
g 8560 qé 854445
= osss 3
o o
> g6 > sl
= =
[©] o
E 8554 E
=] =}
+ 8552 + 8544351
S 8550 =}
I= 8548 f= 85443
£ o €
asus . . . . . n . . 8544, . . . . . . . . .
w0 4 42 43 44 45 a6 47 48 49 50 46 461 462 463 464 465 466 467 468 469 47
dosage, u dosage, u

Figure 4: Graph of m,(T,) over [40,50] (a, left) and a blow-up over [46,47] (b,
right)

A formulation that is consistent with problem [H] is to give all available anti-
angiogenic agents at rate u over the interval [0, %] and then still concatenate the
trajectory at the point (py, (ty), ¢y (t,)) when all agents have been exhausted with
a trajectory corresponding to the control v = 0. The minimum tumor volume then
is realized as this trajectory crosses the diagonal at some time 7, and we denote
this minimum tumor volume by m, (T3,). Minimizing over u gives the following
optimal constant dosage,

u, = argminm, (T,) = 46.34, (14)

and the minimal tumor volume is p, = 8544.15. Fig. 4 gives the graph of the
function m,(7T,) with a small interval around the optimal value blown up on the
right. For comparison, if one still adds the © = 0 segment to the trajectory for
4 = 45.27, then the corresponding value on the diagonal is slightly larger given
by 74 (Th) = 8544.62 with final time T = 6.777 days. Clearly, from a practical
point of view there is no significant difference between these values and both are
extraordinarily close to the theoretically optimal value 8533.38.

As another comparison, Ledzewicz and Schéttler (2008b) also considered the
constant dosage u = 45.75 that was computed by averaging the theoretically op-
timal dosages over the time span of 6.558 days when drugs are administered (not
including the final segment with u = 0). Such a dose can always be obtained as an
immediate byproduct of the calculation of the optimal control. This gave the value
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control minimal value | terminal time | switching time to u =0
(mm?) (days) (days)
optimal 8533.38 6.722 6.558
u = 45.75 8570.09 6.558 no switching
u = 45.75 8544.30 6.709 6.558
u = 45.27 8570.00 6.626 no switching
1 = 45.27 8544.62 6.777 6.626
Uy, = 46.34 8544.15 6.626 6.474

Table 1: Comparison of minimal values for various constant dosage protocols for
problem [H]. The control @ is the averaged value of the optimal control for the
given initial condition; u and wu., respectively, denote the dosages that minimize
the tumor volume over constant dose protocols, measured when all anti-angiogenic
agents are exhausted and when the minimal tumor volume is realized.

pa = 8570.09. Adding the final segment u = 0 we get the minimum value 8544.30
with final time T" = 6.709 days. Table 1 summarizes the numerical results.
Clearly, these constant dose protocols already provide excellent approximations
to the theoretically optimal control. The value can still be improved upon by
increasing the number of switchings in the control. Since the constant approxima-
tions already do so well, we only consider controls that have one switching, i.e.,
give a constant dose u; for time ¢; and then give a second constant dose us for time
to where the second time is calculated so that all anti-angiogenic agents become
exhausted, i.e.,
Uty + ugty = A. (15)

Thus this is a 3-dimensional minimization problem with variables ui, t1, and us,
and we denote this 3-tuple by v, v = (uy,t1;uz2). As above, if we denote the point
when the agents are exhausted by (p,(ty), ¢y (t»)) and the associated point on the
diagonal by 7,(T},), then we can define controls ¢ and v, as the corresponding
minimizers,

0 = argmin p,(t,) and v, = argmin 7, (7T5,). (16)

The optimal values for the same data and initial conditions specified earlier are
summarized in Table 2. The dosages are close to each other, but their durations
differ by quite a bit. However, this does not effect the minimum tumor volume
much, although overall of course there is improvement in the sense that the differ-
ence to the optimal value is cut in half. But on an absolute scale the improvement
is not important.

Figs. 5 and 6 give two graphs of the values 7, (T},) when the first and second
dosages, respectively, are fixed at their optimal values, u; = 42.47 and us = 49.73.
Fig. 7 gives the graphs of the trajectories corresponding to the controls v and v,
while Fig. 8 compares the single-dose control w, (in red) with the 2-stage control v,
(in blue). Consistent with dose intensification along the optimal singular control,
these dosages increase: ug > ug.
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Figure 5: A cross section through the graph of m,(7T,) at u; = 42.47 for problem
(H]

control Uy t1 Us to minimal value | terminal time
(days) (days) (mm?) (days)
optimal 8533.38 6.722
0 41.83 | 2.931 | 47.20 | 3.758 8540.20 6.843
Vs 42.47 | 3.525 | 49.73 | 3.022 8539.21 6.736

Table 2: Comparison of minimal values for various 2-stage constant dosages pro-
tocols for problem [H]. The controls ¢ and wv., respectively, denote the dosages
that minimize the tumor volume measured when all anti-angiogenic agents are
exhausted and when the minimal tumor volume is realized.
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5 The Optimal Solution for Model [E]

Ergun, Camphausen and Wein (2003) modified the g-dynamics from Hahnfeldt et
al. (1999) to
g = b’ —dg’ — Guq — pq, (17)

with the same interpretation for the parameters. These endogenous inhibition and
stimulation terms, I(q) = dg5 and S (q) = bg3, result in a significant mathematical
simplification of the g-dynamics since they eliminate the tumor volume p from this
equation. The argument for this change put forth by Ergun et al., (2003), is the
differential-algebraic nature of the original model with a ¢-dynamics that reaches
its steady-state extremely fast. With the proposed modification this no longer is
the case and overall there is a better balance in the substitution of stimulation and
inhibition. Since p and ¢ tend to move together in steady state, and the steady
state is what the model intends to capture, there is some justification to replace p
with ¢ in the g-dynamics and arrive at an equation of the form

G =bg" —bg" "

for the endogeneous inhibition and stimulation terms. A choice of v = 1 in this
sense would be consistent with the spatial analysis carried out by Hahnfeldt et al.,
(1999), while the choice v = % made by Ergun et al., (2003), is consistent with
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the inhibition term being proportional to the tumor radius, not its surface area. If
we replace the g-dynamics (2) with (17) to obtain problem formulation [E], then
it turns out that the structure of optimal solutions indeed is qualitatively identical
(Ledzewicz and Schéttler, 2005, 2009). In fact, for this model Theorem 1 remains
true verbatim. Thus, while clearly simplifying the dynamics, this modification
does retain essential qualitative features of the original model. Of course, the
quantitative formulas for the singular control and arc change and these are given
below in Theorem 3.

Theorem 3 There exists a locally minimizing singular arc S in (p, q)-space defined
as a function of g over an interval q; < q < q;, by

b—dg> — pg>
psin(q) = qexp [ 3————— ] . (18)
The corresponding singular control is given in feedback form as

1 (b—dgs b+ dg3
sin =~ 3 - 19
usin(q) G( = + €b_dq% 1 (19)

and the values q; and ¢, are the unique solutions to the equation usin(q) = a in
e
(0,4/(3)"). =

The two graphs given in Fig. 9 illustrate the singular control and the geometry of
the singular curve for this model and the same system parameter values considered
before. Due to the changes in the dynamics, however, we now have taken a = 15 mg
of dose per day and A = 45 mg for the control limits. In this case saturation of the
singular control only occurs at the upper limit v = a and restricts the admissible
part to the interval [¢;,¢;;]. This portion is marked as the solid curve in Fig. 9(b).
The lower limit ¢; is so small that for all practical purposes this saturation can be
ignored. Again, the qualitative structure shown in these figures is generally valid
for arbitrary parameter values, both for the control and the singular curve. But in
this case the admissible portion on the singular arc shrinks with decreasing values
for the upper control limit a until it disappears for some low control limit ¢* when
the singular control no longer is admissible.

Like in the model by Hahnfeldt et al., (1999), the singular curve becomes the
center piece of a synthesis of optimal controlled trajectories and this synthesis,
shown in Fig. 10, is qualitatively identical with the previous one. Fig. 11 gives the
optimal control and its corresponding trajectory for the initial conditions (po, go) =
(8,000 mm3; 10,000 mm?3). For this initial condition the optimal concatenation
sequence also is as0: the optimal control is given at full dosage u = a = 15 until the
singular curve S is reached at time ¢; = 1.341 days. The administration then follows
the time-varying singular control for to = 3.722 days until all anti-angiogenic agents
are exhausted after 5.062 days. Due to after effects the maximum tumor reduction
is realized along a trajectory for control v = 0 at the optimal terminal time T =
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Figure 9: Singular control (a, left) and admissible portion of the singular arc (b,
right) for problem [E]

9.378 days when the trajectory reaches the diagonal p = ¢g. The theoretically
optimal minimum value for these data is given by p. = p(T") = 2242.65. Note the
significantly longer pieces along the constant controls © = a and u = 0 for this
model, the effect desired in this modification of the original model.

6 Realizable Suboptimal Protocols for Problem
[E]

We again consider piecewise constant controls for this initial condition (pg, qo) =
(8,000 mm3; 10,000 mm?) and compare the minimum values for these classes with
the theoretically optimal value. Although the simulation is done for a different
initial condition and the parameter values are not directly comparable because
of the different g-dynamics, we shall see that the quality of approximations is
equally excellent for this model. We again start with strategies that give the full
amount A of anti-angiogenic agents at a constant rate and minimize the tumor
volume achievable in this way. Here, since the deviations are minimal, we now only
consider the optimal constant dose where a trajectory with the control «w = 0 has
been added to reach the diagonal, i.e., the control u,. The best constant dosage
is u. = 9.246 and is given over t; = 4.867 days; then the control is still given by
us = 0 for to5 = 4.735 days until the minimum tumor volume is realized as the
trajectory crosses the diagonal at the time T' = 9.602 days. Fig. 12(a) shows the
graph of the associated value function , (T,,) for dosages lying between u = 8 and
u = 11 around the optimal value u, and Fig. 12(b) shows the best constant dose
trajectory. The minimal tumor volume realized this way is p, = 2264.22 and only
has a relative error of 0.97% compared with the optimal value.
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For comparison, in Ledzewicz and Schéttler, (2008b), we considered the con-
stant dosage u = 8.888 that was computed by averaging the theoretically optimal
dosages over the time span of 5.063 days when drugs are administered along the
optimal solution (not including the final segment with v = 0). For this strategy
virtually the identical value pz = 2264.44 is obtained at T = 9.732 days. In fact
the value m,(T,) is rather flat around its minimum value and any control between
u = 8 and u = 11 gives excellent approximations.

Going to a 2-stage protocol, the approximation of the optimal value can still
be improved upon. Following the same scheme and using the same notation as in
section 4, the minimizing controls v, = argminm,(T,) are given by u; = 15.00 for
time ¢; = 1.273 days, us = 6.710 for t; = 3.861 days, and t3 = 4.240 the time along
the final u = 0 segment until the diagonal is reached at time 7" = 9.374 when the
minimum value is realized. The optimal value decreases to 2242.75 compared with
the optimal value of 2242.65 and thus for any practical standard such a protocol
duplicates the optimal solution. In this case the optimal two-stage regimen starts
out at maximum dose (like the theoretically optimal control) and then lowers the
value to reflect the lower dosages along the singular control. Fig. 13 gives a cross
section of the value m,(T,) when the first dosage is kept fixed at its optimal (and
maximum) value u; = 15.00. Fig. 14 gives the graph of the corresponding optimal
trajectory. We summarize the results for the constant and 2-stage protocols in
Table 3.

7 Daily and Semi-Daily Regimes
In the two approaches above the durations of the various dosages are included as

optimization variables; in other words, the times for how long dosages are given
are unrestricted. It is sometimes of practical interest to specify these durations
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control Uy t1 Us to t3 T min. value
optimal 15.00 | 1.341 | singular | 3.722 | 4.315 | 9.378 2242.65
one stage, s 9.246 | 4.867 — — 4.735 | 9.602 2264.22
avg. optimal, | 8.888 | 5.063 — — 4.669 | 9.732 2264.44
two stage, . 15.00 | 1.273 6.710 3.861 | 4.240 | 9.374 2242.75

Table 3: Comparison of the minimal value for piecewise constant dosage protocols
for problem [EJ; 1, t2 and t3 denote the times of administration (in days)

a priori and consider daily or even semi-daily dosages (e.g., give the dosage for
8 or 12 hour periods and then include a rest period during the night). Clearly
any such strategy reduces the flexibility and thus the number of segments needs
to be increased to obtain a similar degree of approximation. It appears reasonable
to give the full amount A of anti-angiogenic agents over the same time period as
the optimal control does, and in this section we still consider these optimization
problems for the two models (and the same data as before).

For the model by Hahnfeldt et al., (1999), the full amount of anti-angiogenic
agents is given over 6.56 days and if we specify to give the same total amount in 6
constant daily doses, then the optimal dosages are given by

uy = 46.61, uy = 45.31, ug = 48.15, ug = 50.71, us = 53.20, and ug = 56.02 (20)

and the tumor volume still decreases along the trajectory for v = 0 for time t7 =
0.169 days until the diagonal p = ¢ is reached with minimal value p(T') = 8544.4.
Note that there is a small dip in the dosage from the first to the second day and then
the dosages gradually increase over the remaining days. This is in agreement with
the structure of the theoretically optimal control that initially applies maximum
dose and then switches to the singular control. Since the piece along which the
optimal control is at maximum is small, the first daily value is significantly lower
than a = 75, but it still is higher than the second daily dose. Along the optimal
singular arc the dose intensifies and this is reflected in the increasing values of
the daily doses over the remaining days. Still, specifying the time structure by
restricting to daily dosages reduces the quality of the approximation. The minimal
value of 8544.30 for the 6 piece strategy is virtually identical with the optimal
constant dose value, but having a larger number of pieces does not yet make up for
the loss of freedom by choosing the times in a 2-piece control when the minimal
value is 8539.2. Fig. 15 shows the daily dosages and corresponding trajectory in
the (p, q)-space with p shown horizontally and ¢ vertically.

Similarly, for the model consider in Ergun et al., (2003), the anti-angiogenic
agents are being used up in 5.062 days along the optimal solution. In fact, if we
run the minimization over 6 constant daily doses, then it turns out that the optimal
dose for the sixth day is equal to v = 0. Minimizing a daily regimen therefore leads
to the following optimal dosages,

uy = 15.00, us = 9.73, uz = 5.45, us = 6.88, and us = 7.94 (21)
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Figure 15: Optimal daily doses (a, left) and corresponding trajectory (b, right) for
problem [H] and initial conditions (pg, qo) = (12,000 mm?; 15,000 mm?)

with the minimum value realized given by 2243.15. Again, this is the value that
the trajectory corresponding to the control v = 0 has as the diagonal p = ¢ is
crossed, in this case at time at 9.373 days. Here, and the reason being the slower
g-dynamics of this modification, the optimal daily strategy is comparable to the
optimal 2-stage regimen v,. Fig. 16 shows these dosages and the corresponding
trajectory.
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Figure 16: Optimal daily doses (a, left) and corresponding trajectory (b, left) for
problem [E] and initial conditions (po, go) = (8,000 mm?; 10,000 mm3)

Again the pattern resembles the structure of the optimal control. During the
first day the control is at maximum level and then drops down. The value for
the second day is an average of the maximum dose with the much lower singular
control. In the optimal solution the dosage is still at maximum for about 8 hours
while it then is lowered to the value u = 3.53 at the onset of the singular arc. In
the dose for the second day this averages out to a value that still is higher than
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the third dose when the optimal control is singular for the entire period, and hence
much smaller than the maximum. But the dosage intensifies along the singular
arc (see Fig. 11) and thus the values increase. The last daily dosage on the fifth
day is determined by the fact that all agents are being used up, but still increases
because of dose intensification along the singular arc and the fact that the optimal
time exceeds 6 hours, so an average over slightly more than one day is being taken.

If one were to include rest periods into each daily regimen, say anti-angiogenic
agents are given at a constant rate for 8, respectively 12, hours, then the 12 hour
scheme would use up the amount A = 45 in exactly 6 daily dosages at the maxi-
mum » = 15 and, due to the requirement that all agents should be exhausted, no
optimization becomes feasible. Similarly, if we only give anti-angiogenic agents for
8 hours, then, in order to use up all agents, 9 days need to be considered at maxi-
mum dosage. The trajectories corresponding to these strategies are shown in Fig.
17 and naturally the quality of approximation decreases further. As a reference,
in this and the subsequent figures the black curve is the optimal trajectory. For
the 12 hour scheme the realized value is given by pion, = 2262.29 and for the 8
hour scheme by pgny = 2335.99. While the 12 hour value still realizes a value in the
range of the optimal constant dosage, degradation starts to occur if the rest-periods
become too large. Longer rest periods allow the vascular support to recover and
with the 8 hour scheme the relative error now is 4.16%, quite large compared to
other values.
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Figure 17: Trajectories corresponding to 12 (a, left), respectively, 8 (b, right) hour
daily doses for problem [E]

Fig. 18 (a) compares the corresponding optimal strategies when the upper limit
a in the control set has been doubled to a = 30. The solid red lines correspond to
the optimal 12 hour doses while the solid blue lines give the optimal daily doses
when a = 15. For comparison, the dashed lines are the average values of the 12
hour doses for the full day and these are close to these optimal daily values. The
optimal trajectory for the semi-daily doses is shown in Fig. 18 (b). In this figure
we also kept the optimal trajectory for a = 15 as the black curve and it is seen
how closely now the semi-daily doses approximate this particular trajectory. But
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of course the optimal control for problem [E] with a = 30 is different and in this
case the maximum tumor reduction possible is given by p.. = 2231.98 compared
with p, = 2242.65 when a = 15. It is interesting to note that a higher initial boost
which drives the system to the singular arc faster leads to a small decrease in the
optimal value. Thus the optimal overall strategy seems to be to get to the singular
arc as fast as possible by a high dose bolus injection (mathematically, an impulse)
and then follow the singular arc with much smaller dosages.

8 Conclusion

Optimal solutions for mathematical models for tumor anti-angiogenesis formulated
by Hahnfeldt et al., (1999), and its modification by Ergun et al., (2003), contain a
segment where the optimal control is given by a time-varying feedback function of
the state variables p and ¢, the primary tumor volume and its carrying capacity,
and thus is not realizable. In this paper we have shown for both models that
easily computable, piecewise constant controls give excellent suboptimal protocols.
For the model by Hahnfeldt et al., (1999), and the initial condition (pg,qo) =
(12,000 mm3; 15,000 mm3) they come within 0.25% of the optimal tumor values for
the specified data. Similarly, for the model by Ergun et al., (2003), and the initial
condition (po,qo) = (8,000mm?;10,000mm?) these values lie within 1% of the
optimal value. In fact, in each case the corresponding value functions are relatively
flat around the optimal solution and thus any dosage that is reasonably close to
the optimal values does not show any degradation in the approximation. Similar
conclusions can be drawn over a wide range of initial conditions (c.f., also Ledzewicz
and Schittler, 2008). From a practical point of view the conclusion can be drawn
that while constant dosage protocols indeed provide very good approximations
to the optimal solutions, the choice of the actual dosage, however, does make a
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difference. Dosages that are too small simply may not show any effect at all and
dosages that are too high unnecessarily waste anti-angiogenic agents. In this sense,
for these models for tumor anti-angiogenesis, the calculation of optimal, piecewise
constant dosages with a small number of switchings, a simple and easy numerical
procedure, always is worthwhile.

This main conclusion reported here remains valid if the models are made more
realistic by including a standard linear pharmacokinetic model for the anti-angiogenic
agents. In this paper, as a first approximation, the dosage of the anti-angiogenic
agents was identified with their concentrations in the plasma. If a linear pharma-
cokinetic equation is added to the model that relates the dosage u to the concentra-
tion c of the agents in the plasma, ¢ = —kc + hu, then the concatenation structure
of the optimal controls is effected. The singular arc is preserved (and the same
equations are valid) and remains optimal, but what was the singular control in this
paper then becomes the optimal concentration (again, exactly the same formula
is retained) and the optimal singular control, now the dosage, is calculated from
the pharmacokinetic model through differentiation of this relation (see, Ledzewicz
et al., 2009a,b). However, mathematically, the order of the singular arc increases
from 1 to 2 and this generates a more complicated optimal transition scheme to and
off the singular arc which now involves rapid switchings, so-called chattering arcs.
Like for the model considered here, practically these are unrealistic and, like in
many engineering applications as well, will need to be approximated by bang-bang
controls with a small number of switchings, exactly as it was done in this paper for
the simplified model. This research currently is in progress.
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