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Abstract— Starting as a tool for characterization of organic
molecules, the use of NMR has spread to areas as diverse as
pharmacology, medical diagnostics (medical resonance imaging)
and structural biology. Recent advancements on the study
of spin dynamics strongly suggest the efficiency of geometric
control theory to analyze the optimal synthesis. This paper
focuses on a new approach to the contrast imaging problem
using tools from geometric optimal control. It concerns the
study of an uncoupled two-spin system and the problem is to
bring one spin to the origin of the Bloch ball while maximizing
the modulus of the magnetization vector of the second spin.
It can be stated as a Mayer-type optimal problem and the
Pontryagin Maximum Principle is used to select the optimal
trajectories among the extremal solutions. Correlation between
the contrast problem and the optimal transfer time problem is
demonstrated. Further, we develop some analysis of the singular
extremals and apply the results to examples of cerebrospinal
fluid/water and grey/white matter of the cerebrum.

I. INTRODUCTION

The primary objective of this paper is to apply techniques
of geometric optimal control theory to the control of the spin
dynamics by magnetic fields in Nuclear Magnetic Resonance
(NMR). Through interaction with a magnetic field, NMR in-
volves the manipulation of nuclear spins. It has many poten-
tial applications extending from the determination of molec-
ular structures (NMR spectroscopy) and quantum computing,
where NMR remains one of the most promising roads in the
construction of a scalable quantum computer [8], to medical
imagery (MRI). As a first example the saturation problem,
which consists in vanishing the magnetization vector of a
given sample, has recently been studied. Saturating a spin
1/2 particle removes its contribution from the NMR spectrum
and therefore increases the resolution of this spectrum. This
type of control could also have applications in medicine
where this non-magnetized sample can be used as a tracer for
following the motion of the blood in the human brain. It was
shown that a gain of 50% in the control duration with respect
to existing techniques was obtained using geometric control
theory [10]. This control law has also been experimentally
implemented.
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In [3], [4], [13], this study has been generalized and
the time optimal problem of one spin 1/2 particle in a
dissipative environment is considered. Classification of the
optimal synthesis with respect to the relevant experimental
parameters has been obtained and it shows the preponderant
role of singular extremals in the optimal solution. We propose
here to extend these works to the study of the simultaneous
control of two non-interacting spins with different relaxation
parameters. Very recently, in [1], the authors analyzed the
time optimal problem of uncoupled two-spin systems with
different resonance offsets and no relaxation parameters. The
problem that we propose to address here differs as follows.
Rather than minimizing the time, we consider the contrast
imaging problem [5], [6]. The basic goal is to bring the
magnetization vector of the first spin toward the center of
the Bloch ball while maximizing the modulus of the mag-
netization vector of the other substance. Roughly speaking,
the substance with a zero magnetization will appear dark,
while the other substance with a maximum modulus of the
magnetization vector will be white.

We introduce in the following a simple model reproducing
the main features of this control problem. We describe the
general structure of the optimal solution and we compute
them for two particular examples.

Each spin 1/2 particle is governed by the Bloch equation

dMx

dt
= −Mx

T2
+ ωyMz

dMy

dt
= −My

T2
− ωxMz

dMz

dt
=

(M0 −Mz)
T1

+ ωxMy − ωyMx

where the state variable is the magnetization vector and T1,
T2 are the relaxation times. The control is the magnetic field
ω = (ωx, ωy) which is bounded by |ω| ≤ ωmax. We use the
normalization introduced in [10]. The normalized coordinates
are q = (x, y, z) = (Mx,My,Mz)/M0. In these coordinates,
the equilibrium point is the north pole (0, 0, 1) and the
normalized control is u = (ux, uy) = 2π

ωmax
(ωx, ωy), |u| ≤

2π, while the normalized time is given by τ = ωmaxt/(2π).
Hence the system takes the form

ẋ = −Γx+ uyz

ẏ = −Γy − uxz
ż = γ(1− z) + (uxy − uyx)

(1)

where Γ = 2π/(ωmaxT2) and γ = 2π/(ωmaxT1). In the
experiments, ωmax can be chosen up to 15,000 Hz but the
value 2π × 32.3 Hz will be considered in this paper.



The experiments are performed for the contrast problems
of cerebrospinal fluid/water [14] and grey/white matter of
cerebrum [7]. In the cerebrospinal fluid/water situation, the
relaxation parameters for the first spin describing the fluid
are T1 = 2000 ms and T2 = 200 ms, while for the second
spin T1 = T2 = 2500 ms. In the second example, the rates of
the grey matter are taken to be T1 = 920 ms and T2 = 100
ms, the rates for the white matter are T1 = 780 ms and
T2 = 90 ms.

For the contrast problem, we consider one pair of spin
systems, each of them solutions of the Bloch equation (1),
with respective damping coefficients (γ1,Γ1), (γ2,Γ2) and
controlled by the same control field. Denoting each system
by dqi

dt = Fi(qi,Λi, u), Λi = (γi,Γi) and qi = (xi, yi, zi) is
the magnetization vector representing each spin. This leads
to consider the system

dq1

dt
= F1(q1,Λ1, u),

dq2

dt
= F2(q2,Λ2, u) (2)

which is written shortly as dx
dt = F (x, u), where x =

(q1, q2). The associated optimal control problem is the
following: starting from the equilibrium point x0 =
((0, 0, 1), (0, 0, 1)) reach in a given transfer time T the final
state q1(T ) = 0 of the first spin (corresponding to zero
magnetization) while maximizing |q2(T )|2.

Remark 1: A subcase of this problem is to restrict the
system to x1 = x2 = 0, while only the real component u1

of the control field u = u1 + iu2 is used.
In both cases, the optimal control is given by the following

criteria:
1) A system dx

dt = F (x, u), x ∈ Rn with fixed initial
state x(0) = x0 where the control belongs to a control
domain U .

2) A terminal manifold M defined by f(x) = 0, where
f : Rn → Rk.

3) A cost to be minimized of the form minu(·) c(x(T ))
where c : Rn → R.

We shall consider the two cases: the full control case of
dx
dt = F0(x) + u1F1(x) + u2F2(x), where x = (q1, q2) ∈
R6
⋂
{|q1| ≤ 1, |q2| ≤ 1} and |u| ≤ M and the subcase

where the control field is restricted to the real field, i.e. u2 =
0, while x ∈ R4

⋂
{|q1| ≤ 1, |q2| ≤ 1}.

II. GEOMETRIC OPTIMAL CONTROL

Consider the system dx
dt = F (x, u), x(0) = x0, x ∈ Rn,

with the terminal manifold M defined by f(x) = 0, and the
problem minu c(x(T )). Fixing the level set to c(x) = m,
this with the terminal condition f(x(T )) = 0, leads us to
introduce a family of manifolds denoted Mm. We denote
A(x0, T ) =

⋃
u∈U x(T, x0, u) the accessibility set union of

terminal points of trajectories emanating at t = 0 from x0 for
each admissible control u(·) ∈ L∞[0, T ]

⋂
U such that the

trajectory x(·, x0, u) is defined on the whole interval. Clearly,
according to the maximum principle, an optimal control
u∗ is such that the corresponding terminal point x∗(T )
belongs to the boundary of the accessibility set A(x0, T )

x0 x∗

f(x) = 0, c(x) = m

A(x0, T )

Fig. 1. Geometric interpretation of the contrast problem.

and corresponds to a terminal manifold Mm such that m is
minimum, see Fig. 1.

This can be restated as the following proposition [11].
Proposition 1 (Maximum Principle): Define the pseudo-

Hamilonian H(x, p, u) = 〈p, F (x, u)〉. An optimal control
has to satisfy the following necessary optimality conditions

1) dx
dt = ∂H

∂p (x, p, u), dpdt = −∂H∂x (x, p, u)
2) H(x, p, u) = maxv∈U H(x, p, v)
3) f(x(T )) = 0
4) p(T ) = p0

∂c
∂x (x(T ) + 〈σ, ∂f∂x (x(T ))〉, σ ∈ Rn, p0 ≤ 0.

The final condition corresponds to a transversality condi-
tion with the standard orientation of the adjoint vector.

Definition 1: The solutions of the first two conditions of
the maximum principle are called extremals, and if they
satisfy the boundary conditions they are called BC-extremals.

For the contrast problem, we have that the boundary
condition is q1(T ) = 0 and the cost is |q2(T )|2. Splitting the
adjoint vector into p = (p1, p2), we deduce the transversality
condition p2(T ) = −2p0q2(T ), p0 ≤ 0. The case p0 = 0
gives p2(T ) = 0. Since the system splits into

q̇1 = F1(q1,Λ1, u), q̇2 = F2(q2,Λ2, u),

the adjoint system decomposes into

ṗ1 = −p1
∂F1

∂q1
, ṗ2 = −p2

∂F2

∂q2

where p = (p1, p2) is written as a row vector. The condition
p2(T ) = 0 corresponds to a second spin which is not
controlled. In the non-trivial case, p0 is nonzero and it can
be normalized to p0 = −1/2.

From the necessary conditions of the Maximum Principle
[11], the two following propositions can be easily shown.

Proposition 2: The time minimizing solutions of the first
spin 1/2 particle can be embedded as extremals of the
contrast problem, with p0 = 0.

Proposition 3: In the contrast problem, the extremals of
the real input case are embedded in the extremal flow of the
complex input case.

As a consequence of the next proposition, the opti-
mal solution to the contrast problem for the cerebrospinal
fluid/water situation, when the transfer time is not fixed, is
to bring the magnetization vector of the fluid to the origin
in minimum time.

Proposition 4: In the real case assume that γ2 = Γ2 <
1/2 and the transfer time is not fixed. Then the solution to the
contrast problem is given by the time minimizing solutions
of the first spin particle.



Proof: The cost to be maximized is defined as c(T ) =
qT2 (T )q2(T ) where T is the duration of the trajectory. Let us
introduce the function c(t) = qT2 (t)q2(t) = y2

2(t)+z2
2(t) and

differentiate it along the trajectory solution of our system. We
obtain:

ċ(t) = 2qT2 (t)q2(t)

= 2(−Γ2y
2
2 − u1y2z2 + z2Γ2 − Γ2z

2
2 + u1y2z2)

= −2Γ2c(t) + 2Γ2z2 ≤ −2Γ2c(t) + 2Γ2

using Γ2 = γ2 and |z(t)| ≤ 1.
Solving the system

{
ġ(t) = −2Γ2g(t) + 2Γ2

g(0) = 1

gives g ≡ 1. In conclusion, since ċ(t) ≤ ġ(t) and c(0) =
g(0) = 1 we have obtained that c(t) is bounded above by
a constant function, hence to maximize c(T ) we need to
minimize the duration of the trajectory T .

III. PRELIMINARY RESULTS IN THE CONTRAST
PROBLEM

From Prop. 3 we see that the real input case plays an
important role in the general synthesis. Thus we can restrict
the analysis to the situation where the control field has
only one component and the contrast problem is governed
by the differential system ẋ = F0(x) + u1F1(x), x =
(y1, z1, y2, z2):

F0 =
2∑

i=1

[
−Γiyi

∂

∂yi
+ γi(1− zi)

∂

∂zi

]

F1 =
2∑

i=1

(−zi
∂

∂yi
+ yi

∂

∂zi
).

A. Collinear Set
The collinear set is contained in the intersection of the

two collinear sets associated to each spin. More precisely,
the parameters of the spin i being Γi and γi, each set is
given by the equation

−Γiy2
i + γizi(1− zi) = 0,

which is the intersection of the two parabolas yi =
±
√

γi

Γi
(1− zi)zi, where 0 ≤ zi ≤ 1. This set contains

the origin and the north pole. Moreover, the compatibility
relation y1Γ1z2 = y2Γ2z1 must be satisfied, and the collinear
set is a curve.

B. Singular set and singular flow
Denoting δi = γi − Γi, i = 1, 2 one has:

[F1, F0] =
2∑

i=1

(−γi + δizi)
∂

∂yi
+ δiyi

∂

∂zi

[[F1, F0], F0] =
2∑

i=1

[
γi(γi − 2Γi)− δ2

i zi
] ∂

∂yi
+ δ2

i yi
∂

∂zi

[[F1, F0], F1] =
2∑

i=1

2δiyi
∂

∂yi
+ (γi − 2δizi)

∂

∂zi

and the corresponding singular flow is defined by

0 = H1 = {H1, H0}
= {{H1, H0}, H0}+ u1s{{H1, H0}, H1}

where Hi = 〈p, Fi(q)〉 are the Hamiltonian lifts and the sin-
gular control is computed by deriving ∂H

∂u1
= H1 = 0 along

an extremal solution of the vector field with Hamiltonian H
using the computation rule dG

dt = {G,H} for any function
G.

Since the equations are linear with respect to p, for
each initial condition q0, this defines a two-dimensional
surface S(q0) in the state space. An additional condition
is provided by the generalized Legendre-Clebsch condition:
{{H1, H0}, H1} ≥ 0. The structure of this surface is related
to the relaxation parameters (Γi, γi).

If the transfer time is not fixed, this leads to the additional
constraint H0 = 0. In this case, the singular flow defines a
single vector field in the state space, since the adjoint vector
can be eliminated and the restricted singular control is given
by

u1s = −D
′(x)

D(x)

where

D′(x) = det(F0, F1, [F1, F0], [[F1, F0], F0])
D(x) = det(F0, F1, [F1, F0], [[F1, F0], F1])

with the corresponding vector field

dx

dt
= F0(x)− D′(x)

D(x)
F1(x)

which can be analyzed using the time reparameterization
dτ = dt/D(q(τ)). In this framework, singular trajectories
are used to classify the systems.

In the general case, a similar computation shows that the
singular trajectories are solutions of an equation of the form

dx

dt
= F0(x)− D′(x, λ)

D(x, λ)
F1(x) (3)

where λ is a one-dimensional time dependent parameter
whose dynamics are deduced from the adjoint equation. The
solutions of (3) emanating from q0 will form S(q0).

C. Numerical simulations

Here, we present some numerical simulations concerning
the singular trajectories. The projection of S(q0) on the
planes (y1, z1), (y2, z2) shows the effect of the relaxation
parameters on the contrast. This point is illustrated by Figs.
2 and 3 for the cerebrospinal fluid/water and grey/white
matter of cerebrum cases, respectively. In each example, we
assume that a bang pulse of large amplitude has been first
applied to the system, the initial point of the singular flow
has coordinates ((−

√
1− z2

0 , z0), (−
√

1− z2
0 , z0)) where

z = z0 is the horizontal singular line of the first spin. This
first bang is necessary so that the singular trajectory of the
first spin can reach the center of the Bloch ball. One clearly
sees in Fig. 3 the similar structure of the different singular



trajectories of the two spins. The situation is completely
different in Fig. 2 for the first example. This explains the
excellent and weak contrasts that can be reached in the first
and second examples with an optimal sequence of the form
bang-singular. Note that some singular control fields diverge
as displayed in Figs. 2 and 3. The conjugate points [2]
have been computed for each singular extremal as shown
in Fig. 4. Similar results have been obtained for the second
spin and for the grey/white matter case. This shows that
the structure bang-singular is not optimal since the first
conjugate point occurs before the saturation of the spin.
A more complicated pulse sequence such as bang-singular-
bang-singular has therefore to be used.
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Fig. 2. Structure of the projection of the singular flow onto the planes
(y1, z1) and (y2, z2) in the cerebrospinal fluid/water case. The trajectories
are plotted in black (solid line) and in red (dashed line). The control fields
of the dashed extremals diverge. The trajectories have been plotted up to
the explosion of the field (the absolute value of the field is larger than 105).
The horizontal solid line is a singular line of the first spin.

Due to the numerical difficulty of the computation of the
bang-singular-bang-singular optimal sequence, we have used
a regularized cost by adding an L2 (or an L2−λ) penalty
on the control. To produce the numerical simulations, we
have used a differential continuation method of the Hampath
code [9]. Such results can be compared with the GRAPE
algorithm [12] which is a standard approach in NMR to solve
the optimization equations.

We illustrate our numerical results on a simulated contrast
experiment. We consider two surfaces as displayed in Fig.
5 filled in with spins 1 or 2 in a homogeneous manner. We
apply the optimal control field and we associate a color to
the final modulus of the magnetization vector of the second
spin. This color is white if the modulus is equal to 1, black
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Fig. 3. Same as Fig. 2 but for the grey/white matter case. An explosion
of the control field is observed for the red (dashed) trajectories.
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Fig. 4. Zoom of the results of Fig. 2 for the first spin near the origin. The
red crosses indicate the position of the first conjugate point. The dashed
lines represent the singular trajectories for which the control field diverges.

if it is zero and a grey variant between. One clearly sees in
Fig. 5 the excellent and weak contrasts that can be obtained
in the first and second examples.

In addition, numerical continuation methods are used
to further analyze the contrast problem. The time-minimal
control for the first spin (without regard for the second spin)
is used as an initial point, and the problem is continuously
deformed to allow an increased time duration. This is illus-
trated in Figs. 6 and 7.
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Fig. 5. Numerical experimental results on the contrast problems of the
cerebrospinal fluid/water (middle) and the grey/white matter of cerebrum
(bottom) examples. The inner disk represents the first spin, while the outside
ring represents the second spin. The two surfaces are separated by a thin
black circle. The top figure is a reference image (for both cases) before the
application of the control field when the two spins are at the north pole of
the Bloch sphere. The middle and bottom images are a representation of the
final contrast as could be achieved in a real experiment. A color has been
associated to each value of the contrast between 0 (black) and 1 (white).
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(a) Evolution of the control field for Tmin +ε and 2Tmin

in solid and dashed lines, respectively. The time T has
been normalized to 1 to plot the two control fields on the
same figure.
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(b) Evolution of the contrast parameterp
y2(T )2 + z2(T )2 as a function of the control

duration, where Tmin is the minimum time to drive the
first spin to zero.

Fig. 6. Control field and resulting contrast for in the cerebrospinal
fluid/water case.
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