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Abstract— A mathematical model for tumor anti-angiogenesis Mathematical models for tumor angiogenesis can broadly
formulated by Ergun et al. [9] is considered as an optimal con- pe divided into those that attempt to accurately describe
trol problem with the aim of maximizing the tumor reduction the biological processes and aim at large scale simulations

achievable with an a priori given amount of anti-angiogenic - .
agents. Optimal controls contain a segment along which the e.g., [1], [4], and those that aggregate variables into low-

dosage follows a time-varying feedback control. With current dimensional dynamical systems enabling a theoreticayanal
medical technologies such a design is not realistic. In this paper sis, e.9., [7], [8], [9], [13]. Amongst these the most proerih
the efficiency of piecewise constant, open-loop protocols with a is the one by Hahnfeldt, Panigrahy, Folkman and Hlatky
small number of switchings is compared with the theoretically [13] who, modelling the tumor as a sphere, analyzed the
optimal solution derived earlier. It is shown that these protocols . . . .
generally provide excellent suboptimal strategies, even when the underl-ylng.consumpuon diffusion process. and fprmula.ted
times of applications are restricted to follow daily patterns. and biologically validated a system of ordinary differanti
| INTRODUCTION equatlpns with the primary tumo'r volgnyg,and the carrying
' capacity of the vasculature, as its principal variables. The

Tumor anti-angiogenesis is a relatively new cancer treagarrying capacity is the maximum tumor volume sustainable
ment approach that aims at depriving a growing tumor dby the vascular network that supports the tumor with nutri-
the blood vessel network it needs for growth. Initially, aents. Many other models are extensions and modifications
growing tumor gets sufficient supply of oxygen and nutrientgased on the theoretical analysis in [13] in the sense that
from the surrounding host blood vessels to allow for celjifferent or more general functions modelling tumor growth
duplication and tumor growth. However, after this statgye used, and that modifications to the dynamics for the
of avascular growth is over, at the size of abdut- 2 carrying capacity are considered. Here we consider one such
mm in diameter, this no longer is true and most tumomodification formulated by Ergun, Camphausen and Wein
cells enter the dormant stage in the cell cycle. These ce[lg], The original model proposed in [13] exhibits a strong
then produce vascular endothelial growth factor (VEGFjjifferential-algebraic character with a fast dynamics tfoe
initiating the process dluimor angiogenesifl1]. During this  carrying capacity that reaches its steady-state very tyick
stage of tumor development, surrounding mature host blogghy this reason Ergun et al. modified the original equation
vessels are recruited to develop the capillaries the tumgp that the stimulation of the vascular support for the tumor
needs for its supply of nutrients. The lining of these newlyhecomes proportional to the tumor radius, not its surface
developing blood vessels consist of endothelial cells@nat area, as it is the case in the original formulation [13].
stimulated by VEGF. Surprisingly, the tumor also produces although simplified, this model does retain essential qual-
inhibitors that at times are used to suppress this proceggtive features of the original formulation. In [9] the opgl
[12]. Anti-angiogenic treatments rely on these mechanismgntrol problem of how to schedule treatment in order
by bringing in external inhibitors (e.g., endostatin) tteajet to maximize the tumor reduction achievable with a given
the endothelial cells and thus block their grOWth. This 'indiamount of angiogenic inhibitors was postu]a’[ed_ (S|m||ar
rectly effects the tumor which, ideally, deprived of neeegs formulations are considered in [22], [21].) Using methods
nutrition, regresses. Contrary to traditional chemotpgra of geometric optimal control (e.g., see [2], [6]), Ledzemvic
this treatment targets genetically stable normal cellsrotd and Schttler have given a full theoretical solution to this
the genetically unstable and fast duplicating cancer chlls problem in [17] for the original model by Hahnfeldt et
has been observed that as a consequence no resistancg|tnd in [15] for its modification by Ergun et al. Both
angiogenic inhibitors has developed in experimental cancgp|utions are qualitatively identical and consist of twpeg
[5]. For this reason, tumor anti-angiogenesis has beeedtallof controls: bang-bang and singular pieces. These are the
a therapy “resistant to resistance” that provides a new hopgpical controls arising in optimal control problems wheee
for the treatment of tumor type cancers [14]. the Hamiltonian is linear in the control and there exists a

This material is based upon research supported by the Nasmence vast literature devoted to the_'r angly3|s (e.-g-: [3]’[1991)
Foundation under collaborative research grants DMS 074/0407410. In the models for tumor anti-angiogenesis considered here,



the control represents the dosage of the drug and bang-bahgng when all inhibitors have been exhausted, the minimum
controls correspond to protocols that give drugs in fulledosof the tumor volume will only be realized along a subsequent
sessions with rest periods and can easily be implementddajectory corresponding to the contral = 0 when this
This, however, is not the case for the singular controlgajectory crosses the diagonak= q. We thus consider the
that are defined as feedback functions depending on tfalowing problem:
statesp(t) and ¢(t) of the system. Clearly, given current [OC] For a free terminal tim&’, minimize the value
medical technologies such a control does not give rise to
a realizable treatment protocol. Thus the following ndtura J(u) = p(T) )
guestion arises: how good are simple, piecewise constant
strategies, the typical way of administering drugs? Knagwin
the optimal solution allows to evaluate the efficiency ofesth
protocols. In [19] we have shown that excellent approxima-
tions can be obtained for the original model by Hahnfeldt
et al. if treatment protocols are optimized over some simple
classes of piecewise constant treatment functions, bath wi
and without restrictions on their duration. In this papee w /T

) . o u(t)dt < A. 4
verify that the same is true for the modification by Ergun, 0
Camphausen and Wein. While a minimization with free timc_arhe upper limita in the definition of the control st —

intervals obviously does better, even when the duration 1[5 a] is a previously determined maximum dose at which
restricted to practical schemes (e.g., daily adminigiali npipitors can be given. In the formulatighis not a therapy

that include rest periods) very good results are obtained. horizon, but is the time when the maximum tumor reduction

Il. A MATHEMATICAL MODEL FORTUMOR is achieved. o . o
ANTI-ANGIOGENESIS Mathematically, it is more convenient to adjoin the con-
straint as a third variable and define the problemRif

T“T“‘" growth_ IS modell_ed by a _Gor_npert2|an grOWthOveraII, this leads to the following dynamical equations:
function with variable carrying capacity, i.e., the rate of

subject to the dynamics (1), (2) with initial con-
ditions py and ¢y over all Lebesgue measurable
functions u with values in the compact interval
[0,al, w: [0,T] — [0,a], that satisfy a constraint
on the total amount of anti-angiogenic agents to be
administered,

change in the volume of primary tumor cells is given b .
g primaty g Y p=—{pln (13) ; p(0) =po, (5)
) = — B . 2 4
p=—tpln (q) (@) ¢ =0bg% — pg —dg® — Gug, q(0) = qo0, (8)
with ¢ a growth parameter. The dynamics for the carrying y=u, y(0) =0. @)

capacity ¢ consists of a balance between stimulatory anfaturally, by their definition all the state variables need
inhibitory effects. In this modification of the model from gy pe positive. It is easily seen [16] that this condition is
[13] by Ergun et al. [9], the stimulation of the vascularensyred by the dynamics and thus it need not be imposed
support by the tumor is taken proportional to the tumops an explicit constraint. The problem formulatighC] also
radius. Furthermore, replacingwith ¢ in steady state allows jnc|ydes initial conditions that are ill-posed in the setisat
to simplify the dynamics to become independentppf available inhibitors are too small to achieve a tumor reidact
@) at all and in this case the mathematically optimal soluten i
given byT = 0 (see, [17]). In this paper, we only consider
The termsbg3 and dgs represent endogenous stimulationwell-poseddata for whichT is positive.
and inhibition terms, respectively, while loss of vascular
support through natural causes is modelleu@sGenerally ~ !!l- THE OPTIMAL SOLUTION FORPROBLEM [OC] [15]
1 is small and often this term is negligible compared to We summarize the complete solution for the optimal
the other factors and thus in the literature sometimes control problem[OC] presented in the form of aynthesis
set to0 in this equation. The last terffug models loss of of optimal controls in [15]. A synthesis provides a full “a
vascular support due to outside inhibition and the variablmap” to all optimal protocols depending on the initial con-
u represents the control in the system. It corresponds to tld&ion in the problem, both qualitatively and quantitatyve
angiogenic dose rate wit a constant that represents the Theorem 3.1:[15] Given a well-posed initial condition
anti-angiogenic killing parameter. (po, go), optimal controls are at most concatenations of the
The obvious questiohow to administer a given amount form 0asa0 where 0 denotes an interval along which no
of angiogenic inhibitors to achieve the “best possible’eeff inhibitors are givenu = 0, a denotes an interval along
then arises and this leads to an optimal control problem. Oneghich the optimal control is constant at full dose,= «q,
natural formulation, first posed in [9] and then taken up by uand s denotes an interval along which the optimal control
in [15]-[17], is to maximize the tumor reduction achievablefollows a time-varying feedback control. This so-called-si
with a given amount of inhibitors. It follows from thg- gular control is only optimal while the system follows a
dynamics that, regardless of the control, the tumor volumgarticular curveS in the (p, ¢)-space, the optimal singular
always decreases in the regipr> ¢. Thus, if p is greater arc. Depending on the initial conditiofpo, ¢), not all of

G =bg5 — ug —dg* — Gug.



16000 [

these intervals need to be present in a specific solution with [

as0 the biologically most relevant scenarill. _ wooor
Despite their name, for an optimal control problem of “¢ |
the type [OC] with nonlinear dynamics singular controls £ S

and the corresponding singular curves are to be expected 2

in a synthesis of optimal controls [6]. In fact, the singular GE) s0o0l-
control and the geometry of the singular cur§eare the 2
most important piece in the design of optimal protocols and > **/
below we give their analytic formulas that were derived in g aooo
[15], [16]. 2
Theorem 3.2:There exists a locally minimizing singular =
arCS defIHEd In(p’ q)-space as a funCtIon @ by 07(‘) 20‘00 40‘00 60‘00 80‘00 10(;00 12(;00 14500 16500 18500 20;00
b—dg3 — pugs carrvina capacitv of the vasculature, a [mm®]
Psin(q) = qexp J—————— (8)
b+ dqg3

) ) ) Fig. 1. The singular ar& with its admissible portion identified as a solid
over an intervalg; < ¢ < ¢;; the corresponding singular curve

control is given in feedback form as

1 [{b— dq§ b+ dq§ inhibitors are given at full dose along this curve, only when
usin(q) = G q3 3§b —dg3 N ©) the trajectory gets near the singular curve the cancer vlum
) . _ starts to decrease. The reason is that during the beginning
The values; andg;, are the unique solutions to the equatioyhase of treatment the inhibitors drive down the carrying

Usin(q) = a in (0,4/ (%)3)_ [ ] capacity and in this way prevent a further growth of the tumor

Fig. 1 illustrates the singular curv and its admissible that otherwise, enabled by its ample vascular support, avoul
portion is shown as the solid segment on the curve. Theccur. Once the trajectory corresponding to the full dose hi
parameter values that were used are taken from [13jd the singular ard, it is no longer optimal to give full dose and
q are volumes measured imm?; ¢ = $-192 = 0.084 per the optimal controls here switch to the singular control. In
day (adjusted to the natural logarithm),= 5.85 per day the absence of saturation of the singular control at its uppe
d = 0.00873 per mm? per day G = 0.15 kg per mg of limit a, the optimal trajectory then follows the singular arc
dose per dayand, for illustrative purposes, we chose a smalntil all inhibitors become exhausted. At this time theragpy
positive value fonu, 1 = 0.02 per day For the control limits over. But due to after effects the maximum tumor reduction
we have takem = 15 mg of dose per dagnd A = 45 mg  is only realized as the trajectory for the controt= 0 crosses
In all our figures we plop vertically andg horizontally since the diagonap = q.
this more easily visualizes tumor reductions. We would like
to emphasize that all our theoretical results (Theorems 3.:
and 3.2, and also the structure of the synthesis of optima
controlled trajectories described below), are fully rahwith
respect taall parameters and that these values are only use:
for numerical illustration.

The admissible singular arc becomes the center piece fo
the synthesis of optimal solutions that is depicted in Fig.
2. The important curves are the admissible portions of the
singular curve (solid blue curve), portions of trajecterie
corresponding to the constant contraels= 0 (dash-dotted
green curves) and = a (solid green curves), and the line Sy . .

. . . . N . q(T),p(T)), point where minimum is realized
p = ¢ (dotted black line) where the trajectories achieve the 200l T 1
maximum tumor reduction. This diagram represents the op- T ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
timal trajectories as a whole and each of the different curve %oz o0& o8 0 1 1z 14 16 18 2
corresponds to a different optimal trajectory depending on carrvina capacitv of the vasculature. a mm°]
the actual initial condition. The thicker curves in the drap
mark one specific such trajectory. In this case the initidlea Fig. 2. Synthesis of optimal controlled trajectories
po for the tumor volume andy for the carrying capacity
are high and require to start the treatment immediately. Fig. 3 gives an example of the optimal control for the
This is the most characteristic scenario and correspondstial conditions (po, qo) = (8,000 mm?;10,000mm?), a
to a phase when the tumor is growing aggressively. Thigpical initial condition in the regiomy < go. The optimal
optimal controlled trajectory therefore initially follavthe concatenation sequence aso: first the optimal control is
curve corresponding to the control= a. Note that, although given at full dosagey = a = 15, until the singular curve
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S is reached at time; = 1.341 days. Then administration

follows the time-varying singular control feg = 3.722 days
until inhibitors are exhausted at tifde)62 days. Due to after |
effects, the maximum tumor reduction is realized along a 2
trajectory for the controk: = 0 at the terminal timel’ = §
9.379 days when the trajectory reaches the diaggnal q. 2 sooo]
The theoretically optimal minimum value for these data is 5
given byp, = p(T) = 2242.65.
ol | 20000 10‘00 20‘00 adolz:ar:(;‘(l);)ng 5‘(;‘0a0pai§)‘i0t()yY q7(;00 EO‘OO 90‘00 10‘000
= 16
g LT 1
g 12 1 Fig. 4. Optimal constant dosage trajectory
T 0l
° — | byproduct of the calculation of the optimal control. For
] this strategy the virtually identical valug; = 2264.44 is
o obtained atT" = 9.732 days. Both numerical results are
2 within about1% of the theoretically optimal value and thus

" time éin dayé) ’ provide an excellent approximation. Furthermore, the ealu
functionm, (T,,) is rather flat around its minimum value and
thus any dosage that will be reasonably close to the minimum

Fig. 3. Optimal control for(po, go) = (8,000 mm?; 10,000 mm?3) :
dosageu. gives excellent values.

IV. REALIZABLE SUBOPTIMAL PROTOCOLS B. Optimal2-stage protocols

We now use the same initial conditiofpg,q) = The optimal control contains a singular piece that can be
(8,000 mm?; 10,000 mm?) to construct several suboptimal, approximated with better accuracy by bang-bang controls
piecewise constant controls - hence realizable protocatel- with an increasing number of switchings [6], [20]. It is

compare their minimum values with the optimal one. therefore expected that the valyg = 2264.22 can be
, improved upon by increasing the number of switchings in
A. Optimal constant dosage protocols the control. We thus also consider controls that have one

We start with strategies that give the full amoufitof  switching, i.e., give a constant dosg for time ¢; and then
inhibitors at a constant rate and minimize the tumor volumgive a second constant dosg for time ¢, where the second
achievable in this way. Given € [0,q], let ¢, = % and time is calculated so that all inhibitors become exhausted,
denote the endpoint byp, (t.), ¢.(t.)). If this point lies i.e.,
above the diagonap,, (t.,) > ¢.(t.), then, since the carrying Uty + usty = A. (11)
capacity is smaller than the tumor volume, there will still
be an additional tumor reduction. Hence, and in order tbhis becomes &-dimensional minimization problem with
be consistent with the problem formulatid@C], we still  variablesu,, t; and u, and we denote thig-tuple by v,
concatenate the trajectory at the polpt, (t.), qu(t.)) with v = (u1,t1;u2). As above, we denote the point when the
a trajectory corresponding to the control= 0 that steers inhibitors are exhausted bip, (t.), ¢,(t,)) and by, (T,)
the system to its unique associated pdint (7,), 7, (7)) the associated point on the diagonal that is obtained Hy stil

on the diagonal. Minimizing the values,(T,) gives the following a trajectory foru = 0 until the diagonap = ¢ is
optimal constant dosage, reached at tim&". The minimizing controls,,

u, = argminm, (T,) = 9.246, (10) v, = argmin 7, (T5), (12)

with corresponding minimal tumor volume, = 2264.22. are then given by, = 15 for time ¢; = 1.273 days and
Inhibitors are given fot; = 4.867 days and then the control u, = 6.710 for ¢ = 3.861 days witht; = 4.240 the time
is u, = 0 for 5 = 4.735 days until the minimum tumor along the finak: = 0 segment and” = 9.374. In this case,
volume is realized as the trajectory crosses the diagonal sihce the optimal control for problef®C] is at maximum
the timeT = 9.602 days. Fig. 4 shows the optimal constantdose for a significant time interval,341 days, the optimal
dosage trajectory. two-stage regimen starts out at maximum dose and even the
For comparison, in [18] we considered the constant dosagjenes are close. The second dosagegives the remaining
u = 8.888 that was computed by averaging the theoreticallynhibitors at a slightly higher value than the averaged liag
optimal dosages over the time span 0062 days when control would do, but shorter in time. The optimal value
drugs are administered (not including the final segment wittlecreases t8242.75, practically identical with the optimal
u = 0). Such a dose can always be obtained as an immediatalue 2242.65.



control optimal U Vs
uy 15.00 9.246 15.00
u =15.00 t1 1.341 4.867 1.273
! Uz singular - 6.710
2360 to 3.722 — 3.861
o t3 4.315 4.735 4.240
g T 9.378 9.602 9.374
§ 2320 minimal value | 2242.65 | 2264.22 | 2242.75
E 2300
3 TABLE |
E 2280
§ -, “@&% COMPARISON OF THE MINIMAL VALUES FOR PIECEWISE (.:ONSTANT
£ RN DOSAGE PROTOCOLS FOR THE MODEL BERGUN ET AL. [9]: ux IS THE

2240
8

BEST CONSTANT DOSE v« GIVES THE BEST2-STAGE VALUES.

dosage u, time t, in days Minimizing daily doses oveb periods, it turns out that the
optimal dosage for the sixth day is equal«to= 0 and we

obtain the following optimal daily dosages,
Fig. 5. A cross section through the graphmf(T,) for u; = 15.00

Uy = 15, Ug = 973, Us = 545,

9000 Ug = 688, Uy = 7.94 U = 0. (13)
The minimum value realized is given hyT) = 2243.15,
slightly worse than the optimél-stage protocol with free
g times. Allowing for6 dosages thus makes up for the loss of
Ent freedom by choosing the times in2astage control.
é Note the dips in the dosages on the second and third day
2| while the dosage increases for the fourth and fifth day. This
pattern follows the structure of the optimal control. At the
junction with the singular arc after.341 days, the optimal
control drops to the values = 3.53 at the onset of the
carrying capacity, g singular portion. In the daily doses for the second day this

still averages out to a value that is higher than the thircedos
when the optimal control is singular for the entire period.
Then the dosage intensifies along the singular arc (see Fig.
3) and this is reflected in the optimal daily dosages.

Fig. 5 shows a cross section of the valug(T,) when If one includes rest periods into each daily regimen, say
the first dosage is kept fixed at its optimal (and maximumiphibitors are given at a constant rate only feror 12
valueu; = 15.00. It is interesting to note how much worse hours, then the2-hours scheme would use up the amount
a higher second dose, does in this case. Essentially, theA = 45 in exactly 6 daily dosages at the maximum =
carrying capacity has been lowered enough so that too high. Because of the requirement that all inhibitors should
a dose just wastes inhibitors. Fig. 6 gives the graph of tHee exhausted, in this case no optimization problem arises.

Fig. 6. Trajectory for the optimal two-dosage protoeql

Corresponding optima| trajectory_ Similarly, if we only give inhibitors for8 hours, therp days
We summarize the results for the optimal constant and@eed to be considered at maximum dosage. Fig. 7 shows
2-stage protocols in Table . this 8-hours on,16-hours off trajectory and for comparison
) _ we also include the optimal trajectory as the black curve.
C. Daily regimes Naturally, the quality of the approximation decreases with

In the two optimization schemes considered above, wihese schemes. The minimal tumor volume realized with the
left the time durations for the dosages free, i.e., thesedim12-hours scheme 912, = 2262.29 and for the8-hours
were optimization variables. It is of practical interestalso  scheme it ispsy, = 2335.99. While the value forl12-hour
consider treatment schedules that specify these duratiopariods is still in the same range as the optimal constant
a priori. Of course, doing this reduces the flexibility anddosage, degradation occurs if the rest-periods become too
leads to weaker approximations. But this effect can bkrge. Longer rest periods allow the carrying capacity to
offset by increasing the number of segments. It appearscover and for thes hour scheme the relative error now
reasonable, to give all available inhibitors over the samis 4.16%, quite large compared to other values.
time period as the optimal control does, but not counting the Fig. 8 compares the optimal daily controls when the upper
final segment along which = 0. For the initial condition limit a in the control set has been doubleddoe= 30. The
(po,q0) = (8,000mm3;10,000mm?) all inhibitors are solid red lines correspond to the optimil-hours dosages
being exhausted i5.063 days along the optimal solution. while the solid blue lines give the optimal daily doses. For
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V. CONCLUSION

The solutions to an optimal control problem for a mathiie]
ematical model for tumor anti-angiogenesis formulated by
Hahnfeldt et al. [13] and also its modification by Ergun eti7)
al. [9] considered in this paper contain segments where the
optimal control is given by a feedback function of the state
variables. While such a strategy does not give rise to a re &
istic therapy protocol, knowing the optimal solutions alto
to judge how close to optimal other simple and realizabl&°]
strategies come. In this paper, we have shown for the model
by Ergun et al. [9] that easily computable, piecewise canstaj20]
controls provide very good suboptimal practical protocols
Both the structure of the optimal controls and its suboptima
approximations clearly point to the importance of selagtin[21]
a good level for the dosages. If the dosage is too small, or
if rest periods are inserted that are too long, then the diverzf\zz
effects are diminished and treatment may simply become
ineffective. On the other hand, too high a dosage becomes
wasteful use of inhibitors. Typically results improved whe
rather than giving inhibitors at full rate, their dosageseve
lowered and the administration of the overall amount of

inhibitors was spread out in time. Thus there seems to exist
“optimal” dosages to give over time and their determination
should also be of practical interest.
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