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Abstract— A mathematical model for tumor anti-angiogenesis
formulated by Ergun et al. [9] is considered as an optimal con-
trol problem with the aim of maximizing the tumor reduction
achievable with an a priori given amount of anti-angiogenic
agents. Optimal controls contain a segment along which the
dosage follows a time-varying feedback control. With current
medical technologies such a design is not realistic. In this paper
the efficiency of piecewise constant, open-loop protocols with a
small number of switchings is compared with the theoretically
optimal solution derived earlier. It is shown that these protocols
generally provide excellent suboptimal strategies, even when the
times of applications are restricted to follow daily patterns.

I. I NTRODUCTION

Tumor anti-angiogenesis is a relatively new cancer treat-
ment approach that aims at depriving a growing tumor of
the blood vessel network it needs for growth. Initially, a
growing tumor gets sufficient supply of oxygen and nutrients
from the surrounding host blood vessels to allow for cell
duplication and tumor growth. However, after this state
of avascular growth is over, at the size of about1 − 2
mm in diameter, this no longer is true and most tumor
cells enter the dormant stage in the cell cycle. These cells
then produce vascular endothelial growth factor (VEGF)
initiating the process oftumor angiogenesis[11]. During this
stage of tumor development, surrounding mature host blood
vessels are recruited to develop the capillaries the tumor
needs for its supply of nutrients. The lining of these newly
developing blood vessels consist of endothelial cells thatare
stimulated by VEGF. Surprisingly, the tumor also produces
inhibitors that at times are used to suppress this process
[12]. Anti-angiogenic treatments rely on these mechanisms
by bringing in external inhibitors (e.g., endostatin) thattarget
the endothelial cells and thus block their growth. This indi-
rectly effects the tumor which, ideally, deprived of necessary
nutrition, regresses. Contrary to traditional chemotherapy
this treatment targets genetically stable normal cells andnot
the genetically unstable and fast duplicating cancer cells. It
has been observed that as a consequence no resistance to
angiogenic inhibitors has developed in experimental cancer
[5]. For this reason, tumor anti-angiogenesis has been called
a therapy “resistant to resistance” that provides a new hope
for the treatment of tumor type cancers [14].
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Mathematical models for tumor angiogenesis can broadly
be divided into those that attempt to accurately describe
the biological processes and aim at large scale simulations,
e.g., [1], [4], and those that aggregate variables into low-
dimensional dynamical systems enabling a theoretical analy-
sis, e.g., [7], [8], [9], [13]. Amongst these the most prominent
is the one by Hahnfeldt, Panigrahy, Folkman and Hlatky
[13] who, modelling the tumor as a sphere, analyzed the
underlying consumption diffusion process and formulated
and biologically validated a system of ordinary differential
equations with the primary tumor volume,p, and the carrying
capacity of the vasculature,q, as its principal variables. The
carrying capacity is the maximum tumor volume sustainable
by the vascular network that supports the tumor with nutri-
ents. Many other models are extensions and modifications
based on the theoretical analysis in [13] in the sense that
different or more general functions modelling tumor growth
are used, and that modifications to the dynamics for the
carrying capacity are considered. Here we consider one such
modification formulated by Ergun, Camphausen and Wein
[9]. The original model proposed in [13] exhibits a strong
differential-algebraic character with a fast dynamics forthe
carrying capacity that reaches its steady-state very quickly.
For this reason Ergun et al. modified the original equation
so that the stimulation of the vascular support for the tumor
becomes proportional to the tumor radius, not its surface
area, as it is the case in the original formulation [13].

Although simplified, this model does retain essential qual-
itative features of the original formulation. In [9] the optimal
control problem of how to schedule treatment in order
to maximize the tumor reduction achievable with a given
amount of angiogenic inhibitors was postulated. (Similar
formulations are considered in [22], [21].) Using methods
of geometric optimal control (e.g., see [2], [6]), Ledzewicz
and Scḧattler have given a full theoretical solution to this
problem in [17] for the original model by Hahnfeldt et
al. and in [15] for its modification by Ergun et al. Both
solutions are qualitatively identical and consist of two types
of controls: bang-bang and singular pieces. These are the
typical controls arising in optimal control problems whenever
the Hamiltonian is linear in the control and there exists a
vast literature devoted to their analysis (e.g., [3], [10],[20]).
In the models for tumor anti-angiogenesis considered here,



the control represents the dosage of the drug and bang-bang
controls correspond to protocols that give drugs in full dose
sessions with rest periods and can easily be implemented.
This, however, is not the case for the singular controls
that are defined as feedback functions depending on the
statesp(t) and q(t) of the system. Clearly, given current
medical technologies such a control does not give rise to
a realizable treatment protocol. Thus the following natural
question arises: how good are simple, piecewise constant
strategies, the typical way of administering drugs? Knowing
the optimal solution allows to evaluate the efficiency of other
protocols. In [19] we have shown that excellent approxima-
tions can be obtained for the original model by Hahnfeldt
et al. if treatment protocols are optimized over some simple
classes of piecewise constant treatment functions, both with
and without restrictions on their duration. In this paper, we
verify that the same is true for the modification by Ergun,
Camphausen and Wein. While a minimization with free time
intervals obviously does better, even when the duration is
restricted to practical schemes (e.g., daily administrations
that include rest periods) very good results are obtained.

II. A M ATHEMATICAL MODEL FORTUMOR

ANTI-ANGIOGENESIS

Tumor growth is modelled by a Gompertzian growth
function with variable carrying capacityq, i.e., the rate of
change in the volume of primary tumor cells is given by

ṗ = −ξp ln

(

p

q

)

(1)

with ξ a growth parameter. The dynamics for the carrying
capacity q consists of a balance between stimulatory and
inhibitory effects. In this modification of the model from
[13] by Ergun et al. [9], the stimulation of the vascular
support by the tumor is taken proportional to the tumor
radius. Furthermore, replacingp with q in steady state allows
to simplify the dynamics to become independent ofp,

q̇ = bq
2

3 − µq − dq
4

3 − Guq. (2)

The termsbq
2

3 and dq
4

3 represent endogenous stimulation
and inhibition terms, respectively, while loss of vascular
support through natural causes is modelled asµq. Generally
µ is small and often this term is negligible compared to
the other factors and thus in the literature sometimesµ is
set to0 in this equation. The last termGuq models loss of
vascular support due to outside inhibition and the variable
u represents the control in the system. It corresponds to the
angiogenic dose rate withG a constant that represents the
anti-angiogenic killing parameter.

The obvious questionhow to administer a given amount
of angiogenic inhibitors to achieve the “best possible” effect
then arises and this leads to an optimal control problem. One
natural formulation, first posed in [9] and then taken up by us
in [15]-[17], is to maximize the tumor reduction achievable
with a given amount of inhibitors. It follows from thep-
dynamics that, regardless of the control, the tumor volume
always decreases in the regionp > q. Thus, if p is greater

thanq when all inhibitors have been exhausted, the minimum
of the tumor volume will only be realized along a subsequent
trajectory corresponding to the controlu = 0 when this
trajectory crosses the diagonalp = q. We thus consider the
following problem:

[OC] For a free terminal timeT , minimize the value

J(u) = p(T ) (3)

subject to the dynamics (1), (2) with initial con-
ditions p0 and q0 over all Lebesgue measurable
functions u with values in the compact interval
[0, a], u : [0, T ] → [0, a], that satisfy a constraint
on the total amount of anti-angiogenic agents to be
administered,

∫ T

0

u(t)dt ≤ A. (4)

The upper limita in the definition of the control setU =
[0, a] is a previously determined maximum dose at which
inhibitors can be given. In the formulationT is not a therapy
horizon, but is the time when the maximum tumor reduction
is achieved.

Mathematically, it is more convenient to adjoin the con-
straint as a third variable and define the problem inR

3.
Overall, this leads to the following dynamical equations:

ṗ = −ξp ln

(

p

q

)

, p(0) = p0, (5)

q̇ = bq
2

3 − µq − dq
4

3 − Guq, q(0) = q0, (6)

ẏ = u, y(0) = 0. (7)

Naturally, by their definition all the state variables need
to be positive. It is easily seen [16] that this condition is
ensured by the dynamics and thus it need not be imposed
as an explicit constraint. The problem formulation[OC] also
includes initial conditions that are ill-posed in the sensethat
available inhibitors are too small to achieve a tumor reduction
at all and in this case the mathematically optimal solution is
given byT = 0 (see, [17]). In this paper, we only consider
well-poseddata for whichT is positive.

III. T HE OPTIMAL SOLUTION FOR PROBLEM [OC] [15]

We summarize the complete solution for the optimal
control problem[OC] presented in the form of asynthesis
of optimal controls in [15]. A synthesis provides a full “road
map” to all optimal protocols depending on the initial con-
dition in the problem, both qualitatively and quantitatively.

Theorem 3.1:[15] Given a well-posed initial condition
(p0, q0), optimal controls are at most concatenations of the
form 0asa0 where 0 denotes an interval along which no
inhibitors are given,u ≡ 0, a denotes an interval along
which the optimal control is constant at full dose,u ≡ a,
and s denotes an interval along which the optimal control
follows a time-varying feedback control. This so-called sin-
gular control is only optimal while the system follows a
particular curveS in the (p, q)-space, the optimal singular
arc. Depending on the initial condition(p0, q0), not all of



these intervals need to be present in a specific solution with
as0 the biologically most relevant scenario.�

Despite their name, for an optimal control problem of
the type [OC] with nonlinear dynamics singular controls
and the corresponding singular curves are to be expected
in a synthesis of optimal controls [6]. In fact, the singular
control and the geometry of the singular curveS are the
most important piece in the design of optimal protocols and
below we give their analytic formulas that were derived in
[15], [16].

Theorem 3.2:There exists a locally minimizing singular
arc S defined in(p, q)-space as a function ofq by

psin(q) = q exp

(

3
b − dq

2

3 − µq
1

3

b + dq
2

3

)

(8)

over an intervalq∗
`
≤ q ≤ q∗u; the corresponding singular

control is given in feedback form as

usin(q) =
1

G

(

b − dq
2

3

q
1

3

+ 3ξ
b + dq

2

3

b − dq
2

3

− µ

)

. (9)

The valuesq∗
`

andq∗u are the unique solutions to the equation

usin(q) = a in (0,

√

(

b

d

)3

). �

Fig. 1 illustrates the singular curveS and its admissible
portion is shown as the solid segment on the curve. The
parameter values that were used are taken from [13]:p and
q are volumes measured inmm3; ξ = 0.192

ln 10
= 0.084 per

day (adjusted to the natural logarithm),b = 5.85 per day,
d = 0.00873 per mm2 per day, G = 0.15 kg per mg of
dose per day, and, for illustrative purposes, we chose a small
positive value forµ, µ = 0.02 per day. For the control limits
we have takena = 15 mg of dose per dayandA = 45 mg.
In all our figures we plotp vertically andq horizontally since
this more easily visualizes tumor reductions. We would like
to emphasize that all our theoretical results (Theorems 3.1
and 3.2, and also the structure of the synthesis of optimal
controlled trajectories described below), are fully robust with
respect toall parameters and that these values are only used
for numerical illustration.

The admissible singular arc becomes the center piece for
the synthesis of optimal solutions that is depicted in Fig.
2. The important curves are the admissible portions of the
singular curve (solid blue curve), portions of trajectories
corresponding to the constant controlsu = 0 (dash-dotted
green curves) andu = a (solid green curves), and the line
p = q (dotted black line) where the trajectories achieve the
maximum tumor reduction. This diagram represents the op-
timal trajectories as a whole and each of the different curves
corresponds to a different optimal trajectory depending on
the actual initial condition. The thicker curves in the graph
mark one specific such trajectory. In this case the initial value
p0 for the tumor volume andq0 for the carrying capacity
are high and require to start the treatment immediately.
This is the most characteristic scenario and corresponds
to a phase when the tumor is growing aggressively. The
optimal controlled trajectory therefore initially follows the
curve corresponding to the controlu = a. Note that, although
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Fig. 1. The singular arcS with its admissible portion identified as a solid
curve

inhibitors are given at full dose along this curve, only when
the trajectory gets near the singular curve the cancer volume
starts to decrease. The reason is that during the beginning
phase of treatment the inhibitors drive down the carrying
capacity and in this way prevent a further growth of the tumor
that otherwise, enabled by its ample vascular support, would
occur. Once the trajectory corresponding to the full dose hits
the singular arcS, it is no longer optimal to give full dose and
the optimal controls here switch to the singular control. In
the absence of saturation of the singular control at its upper
limit a, the optimal trajectory then follows the singular arc
until all inhibitors become exhausted. At this time therapyis
over. But due to after effects the maximum tumor reduction
is only realized as the trajectory for the controlu = 0 crosses
the diagonalp = q.
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Fig. 2. Synthesis of optimal controlled trajectories

Fig. 3 gives an example of the optimal control for the
initial conditions (p0, q0) = (8, 000mm3; 10, 000mm3), a
typical initial condition in the regionp0 < q0. The optimal
concatenation sequence isas0: first the optimal control is
given at full dosage,u = a = 15, until the singular curve



S is reached at timet1 = 1.341 days. Then administration
follows the time-varying singular control fort2 = 3.722 days
until inhibitors are exhausted at time5.062 days. Due to after
effects, the maximum tumor reduction is realized along a
trajectory for the controlu = 0 at the terminal timeT =
9.379 days when the trajectory reaches the diagonalp = q.
The theoretically optimal minimum value for these data is
given byp∗ = p(T ) = 2242.65.
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Fig. 3. Optimal control for(p0, q0) = (8, 000 mm3; 10, 000 mm3)

IV. REALIZABLE SUBOPTIMAL PROTOCOLS

We now use the same initial condition(p0, q0) =
(8, 000mm3; 10, 000mm3) to construct several suboptimal,
piecewise constant controls - hence realizable protocols -and
compare their minimum values with the optimal one.

A. Optimal constant dosage protocols

We start with strategies that give the full amountA of
inhibitors at a constant rate and minimize the tumor volume
achievable in this way. Givenu ∈ [0, a], let tu = A

u
and

denote the endpoint by(pu(tu), qu(tu)). If this point lies
above the diagonal,pu(tu) > qu(tu), then, since the carrying
capacity is smaller than the tumor volume, there will still
be an additional tumor reduction. Hence, and in order to
be consistent with the problem formulation[OC], we still
concatenate the trajectory at the point(pu(tu), qu(tu)) with
a trajectory corresponding to the controlu = 0 that steers
the system to its unique associated point(πu(Tu), πu(Tu))
on the diagonal. Minimizing the valuesπu(Tu) gives the
optimal constant dosage,

u∗ = arg min πu(Tu) = 9.246, (10)

with corresponding minimal tumor volumep∗ = 2264.22.
Inhibitors are given fort1 = 4.867 days and then the control
is u∗ = 0 for t2 = 4.735 days until the minimum tumor
volume is realized as the trajectory crosses the diagonal at
the timeT = 9.602 days. Fig. 4 shows the optimal constant
dosage trajectory.

For comparison, in [18] we considered the constant dosage
ū = 8.888 that was computed by averaging the theoretically
optimal dosages over the time span of5.062 days when
drugs are administered (not including the final segment with
u = 0). Such a dose can always be obtained as an immediate
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Fig. 4. Optimal constant dosage trajectory

byproduct of the calculation of the optimal control. For
this strategy the virtually identical valuepū = 2264.44 is
obtained atT = 9.732 days. Both numerical results are
within about1% of the theoretically optimal value and thus
provide an excellent approximation. Furthermore, the value
functionπu(Tu) is rather flat around its minimum value and
thus any dosage that will be reasonably close to the minimum
dosageu∗ gives excellent values.

B. Optimal2-stage protocols

The optimal control contains a singular piece that can be
approximated with better accuracy by bang-bang controls
with an increasing number of switchings [6], [20]. It is
therefore expected that the valuep∗ = 2264.22 can be
improved upon by increasing the number of switchings in
the control. We thus also consider controls that have one
switching, i.e., give a constant doseu1 for time t1 and then
give a second constant doseu2 for time t2 where the second
time is calculated so that all inhibitors become exhausted,
i.e.,

u1t1 + u2t2 = A. (11)

This becomes a3-dimensional minimization problem with
variablesu1, t1 and u2 and we denote this3-tuple by v,
v = (u1, t1;u2). As above, we denote the point when the
inhibitors are exhausted by(pv(tv), qv(tv)) and byπv(Tv)
the associated point on the diagonal that is obtained by still
following a trajectory foru = 0 until the diagonalp = q is
reached at timeT . The minimizing controlsv∗,

v∗ = arg minπv(Tv), (12)

are then given byu1 = 15 for time t1 = 1.273 days and
u2 = 6.710 for t2 = 3.861 days with t3 = 4.240 the time
along the finalu = 0 segment andT = 9.374. In this case,
since the optimal control for problem[OC] is at maximum
dose for a significant time interval,1.341 days, the optimal
two-stage regimen starts out at maximum dose and even the
times are close. The second dosageu2 gives the remaining
inhibitors at a slightly higher value than the averaged singular
control would do, but shorter in time. The optimal value
decreases to2242.75, practically identical with the optimal
value2242.65.
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Fig. 6. Trajectory for the optimal two-dosage protocolv∗

Fig. 5 shows a cross section of the valueπv(Tv) when
the first dosage is kept fixed at its optimal (and maximum)
valueu1 = 15.00. It is interesting to note how much worse
a higher second doseu2 does in this case. Essentially, the
carrying capacity has been lowered enough so that too high
a dose just wastes inhibitors. Fig. 6 gives the graph of the
corresponding optimal trajectory.

We summarize the results for the optimal constant and
2-stage protocols in Table I.

C. Daily regimes

In the two optimization schemes considered above, we
left the time durations for the dosages free, i.e., these times
were optimization variables. It is of practical interest toalso
consider treatment schedules that specify these durations
a priori. Of course, doing this reduces the flexibility and
leads to weaker approximations. But this effect can be
offset by increasing the number of segments. It appears
reasonable, to give all available inhibitors over the same
time period as the optimal control does, but not counting the
final segment along whichu = 0. For the initial condition
(p0, q0) = (8, 000mm3; 10, 000mm3) all inhibitors are
being exhausted in5.063 days along the optimal solution.

control optimal u∗ v∗
u1 15.00 9.246 15.00
t1 1.341 4.867 1.273
u2 singular − 6.710
t2 3.722 − 3.861
t3 4.315 4.735 4.240
T 9.378 9.602 9.374

minimal value 2242.65 2264.22 2242.75

TABLE I

COMPARISON OF THE MINIMAL VALUES FOR PIECEWISE CONSTANT

DOSAGE PROTOCOLS FOR THE MODEL BYERGUN ET AL. [9]: u∗ IS THE

BEST CONSTANT DOSE, v∗ GIVES THE BEST2-STAGE VALUES.

Minimizing daily doses over6 periods, it turns out that the
optimal dosage for the sixth day is equal tou = 0 and we
obtain the following optimal daily dosages,

u1 = 15, u2 = 9.73, u3 = 5.45,

u4 = 6.88, u5 = 7.94 u6 = 0. (13)

The minimum value realized is given byp(T ) = 2243.15,
slightly worse than the optimal2-stage protocol with free
times. Allowing for6 dosages thus makes up for the loss of
freedom by choosing the times in a2-stage control.

Note the dips in the dosages on the second and third day
while the dosage increases for the fourth and fifth day. This
pattern follows the structure of the optimal control. At the
junction with the singular arc after1.341 days, the optimal
control drops to the valueu = 3.53 at the onset of the
singular portion. In the daily doses for the second day this
still averages out to a value that is higher than the third dose
when the optimal control is singular for the entire period.
Then the dosage intensifies along the singular arc (see Fig.
3) and this is reflected in the optimal daily dosages.

If one includes rest periods into each daily regimen, say
inhibitors are given at a constant rate only for8 or 12
hours, then the12-hours scheme would use up the amount
A = 45 in exactly 6 daily dosages at the maximumu =
15. Because of the requirement that all inhibitors should
be exhausted, in this case no optimization problem arises.
Similarly, if we only give inhibitors for8 hours, then9 days
need to be considered at maximum dosage. Fig. 7 shows
this 8-hours on,16-hours off trajectory and for comparison
we also include the optimal trajectory as the black curve.
Naturally, the quality of the approximation decreases with
these schemes. The minimal tumor volume realized with the
12-hours scheme isp12hr = 2262.29 and for the8-hours
scheme it isp8hr = 2335.99. While the value for12-hour
periods is still in the same range as the optimal constant
dosage, degradation occurs if the rest-periods become too
large. Longer rest periods allow the carrying capacity to
recover and for the8 hour scheme the relative error now
is 4.16%, quite large compared to other values.

Fig. 8 compares the optimal daily controls when the upper
limit a in the control set has been doubled toa = 30. The
solid red lines correspond to the optimal12-hours dosages
while the solid blue lines give the optimal daily doses. For
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Fig. 7. Trajectory corresponding to8-hours daily doses

comparison, the dashed lines are the average values of the
12-hours doses for the full day and these are very close to
the optimal daily values.
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Fig. 8. Comparison of the optimal8- and12-hours dosages fora = 30.

V. CONCLUSION

The solutions to an optimal control problem for a math-
ematical model for tumor anti-angiogenesis formulated by
Hahnfeldt et al. [13] and also its modification by Ergun et
al. [9] considered in this paper contain segments where the
optimal control is given by a feedback function of the state
variables. While such a strategy does not give rise to a real-
istic therapy protocol, knowing the optimal solutions allows
to judge how close to optimal other simple and realizable
strategies come. In this paper, we have shown for the model
by Ergun et al. [9] that easily computable, piecewise constant
controls provide very good suboptimal practical protocols.
Both the structure of the optimal controls and its suboptimal
approximations clearly point to the importance of selecting
a good level for the dosages. If the dosage is too small, or
if rest periods are inserted that are too long, then the overall
effects are diminished and treatment may simply become
ineffective. On the other hand, too high a dosage becomes
wasteful use of inhibitors. Typically results improved when,
rather than giving inhibitors at full rate, their dosages were
lowered and the administration of the overall amount of

inhibitors was spread out in time. Thus there seems to exist
“optimal” dosages to give over time and their determination
should also be of practical interest.
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